
UITP 2010

Engineering the Prover Interface

Holger Gast

Wilhelm-Schickard Institut für Informatik
Universität Tübingen

gast@ informatik. uni-tuebingen. de

Abstract

Practical prover interfaces are sizeable pieces of software, whose construction and maintenance
requires an extensive amount of effort and resources. This paper addresses the engineering aspects
of such developments. Using non-functional properties as quality attributes for software, we discuss
which properties are particularly relevant to prover interfaces and demonstrate, by the example of
the I3P interface for Isabelle, how judicious architectural and design decisions lead to an interface
software possessing these properties. By a comparison with other proposed interfaces, we argue
that our considerations can be applied beyond the example project.

Keywords: software engineering, non-functional properties, software quality

1 Introduction

The discussion of prover interfaces in the past has focused primarily on the
functionality available to the user. A convenient management of proof scripts
[11,8,1,3] is the current basis for using interactive provers like Isabelle and
Coq. In this environment, the prover may support the user in writing the
proof scripts [5], or check proof documents that are close to mathematical
texts [16]. Proof-by-pointing [10,9,31], graphical proving metaphors [27], or
prover-specific interaction models [23] promise improved user experience. Co-
operative proof development is enabled by web-interfaces for provers [26]. Inte-
grated verification environments offer prover interfaces for a special application
[24,13,15].

Despite presenting medium to large software systems, the cited studies
surprisingly have neglected the engineering considerations necessary to build
these systems. Instead, they focus on the broad software structure: brokers
are used to decouple interface components from prover components [4,32].

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

gast@informatik.uni-tuebingen.de


Gast

The construction of web-interfaces focuses on technical aspects of client/server
communication [26]. The proof-by-pointing interfaces exhibit the interaction
between prover and interface, but not the implementation of the UI [10,27].
The generic interface [24] describes a concrete Java interface for prover plugins,
but elides the main effort, the construction of the Eclipse plugin.

Although one can argue that this high-level mode of presentation is neces-
sary for conciseness, it still leaves open a central question in the study of user
interfaces for theorem provers: given a desirable functionality, how can one
craft a software that will deliver this functionality reliably and with as little
programming and maintenance effort as necessary? One indication that this
question merits, indeed, more consideration, is that most of the cited systems
are available only as prototypes, or have not been maintained for a long time.

This paper addresses the identified question by applying standard ap-
proaches for the construction of user interfaces to the particular domain of
theorem provers. We base the discussion of engineering considerations on de-
sirable non-functional properties of a prover interface software [6] (Section 2).
The concrete example of I3P, the Interactive Interface for the Isabelle Prover
([21]; Section 3), is then used to demonstrate the realization of the engineer-
ing goals (Section 4). Throughout, we emphasize the relevance of the general
principles for the theorem prover interfaces. The discussion of related work
(Section 5) then applies our reasoning to existing systems.

2 Desirable Non-functional Properties

There are always two possible views on a software system: its users are mainly
interested in the available functionality, and the support they get in proceeding
with their work; its developers, maintainers, financers, and project managers
necessarily place strong requirements on the quality of the software, which can
be captured by using non-functional properties [6] as quality attributes. This
section discusses those properties most pertinent to the prover interfaces and
thus sets the goals for the engineering consdirations presented subsequently.

Changeability Software systems need to change over time, whenever their
environment or user demands change. Whether changes are accomodated
gracefully or disrupt the entire software structure by requiring many small
changes (“shotgun surgery” [17]) is therefore a crucial quality criterion. In
the case of prover interfaces, this necessity is particularly pronounced: since
provers are research tools, they tend to adopt the latest developments very
rapidly, often sacrificing backward compatibility by necessity. Consequently,
when the prover changes, the interface is likely to change as well.

Maintainability A major portion of the total effort (and cost) of software
development is needed for the maintenance of released systems. Although

2



Gast

maintainability is related to changeability, its emphasis is on keeping the
existing system stable, rather than changing it to meet particular demands.
For prover interfaces, maintainability is important because any resources
spent on the interface are lost for the development of the prover itself.

Traceability Traceability expresses that the functional requirements of the
software can be traced, through the architecture and design, to the con-
crete implementation. It is therefore a prerequisite to maintainability and
changeability, because it clarifies which parts need to be modified to achieve
a particular effect. Indeed, experience with the Proof General/Emacs code
base, which suffers from the properties of Elisp, suggests that this is one of
the biggest obstacles to maintaining a running system [33].

Testability Agile software processes [7,28] have propagated the insight that
programmers will only be confident about making necessary changes if they
can be sure not to break existing functionality. This can be ensured by
automatic tests which are run frequently during development. However,
software must be written to be testable: it must be possible to access single
components in isolation to identify the source of failures easily. Since rapid
changes in the prover induce rapid changes in its interface, testability is a
crucial necessity. Furthermore, a prover user’s will not tolerate introduced
failures that occur only when a particular function is requested — they are
not interested in the interface, but only in the prover itself.

Re-usability The development of a prover interface requires substantial ef-
forts. It is therefore desirable that it can be re-used in different contexts,
for instance in integrated verification environments [24,13,15].

Extensibility A software is extensible if it provides well-defined mechanisms
for integrating new functionality without modifying the existing code base.
The user interface for a prover, in particular, must be extensible to reflect
newly developed prover features to achieve a maximum benefit for the user.

It is important to note that these properties are not goals in themselves,
which are prescribed by some abstract software design regime. The real goals
have been given by identifying their relevance for prover interfaces. The non-
functional properties serve only as stepping stones in achieving these goals,
because the software engineering literature provides strategies to achieve the
properties, while not giving any specific recommendations for prover interfaces.
The transfer of the general approaches to the specific application is thus a main
point of the present paper.

3 System Description

This section gives an overview of the functionality of I3P from the user’s
perspective. The screenshot of the running I3P is shown in Figure 1. I3P

3



Gast

Fig. 1. Screenshot of Running System

offers the main components known from the current standard interface, Proof
General/Emacs: editors for theories and ML files, a viewer for processing
results, and a tree-structured overview over the currently selected theory. We
will now briefly summarize their functionality.

The theory editor component lets the user edit the text of proof docu-
ments. It offers an input facility for mathematical symbols that emulates
the Emacs XSymbols mode. Files are saved as usual with encoded XSymbol
names. Automatic indentation follows the nesting level of proofs. The theory
editor provides syntax highlighting and also handles dynamic definitions of
new Isar keywords. The syntax highlighting and automatic indentation also
recognize embedded LATEX and ML sources. Processed commands are locked
and highlighted as expected, and files loaded by the prover are locked as well.

The theory explorer component arranges the commands in the current
theory according to the nested Isar proof structure. It offers a context menu
for direct manipulation [30], e.g. execution or undoing commands, or jumping
to a command in an editor.

The result viewer lets the user examine the prover messages stored in the
state of single commands (Section 4.5). The display is split into normal out-
put, errors and warnings, and trace messages. Since messages for previously
processed commands are kept, the user can go back in the proof script.

The SML editor offers syntax highlighting and automatic indentation.
Again, files loaded by the prover are highlighted as “locked” and the user
cannot edit them.

I3P enables the user to manage different installed provers and startup op-
tions (Figure 3 (a)). Each configuration includes an installation, the chosen

4



Gast

(a) Management of Configurations (b) Options Dialog

prover driver (Section 4.6) and the startup options, which is the logic image
in the case of Isabelle. A wizard allows the user to define new configurations
by selecting a prover installation, the driver to be applied, and the startup
options to be given. The wizard is generic such that the individual prover
driver can determine which startup options are available.

I3P provides a dialog for editing Isabelle’s run-time options (Figure 3 (b)),
and stores the settings between sessions. Furthermore, the novel concept of
command local options allows option settings to be attached to single com-
mands, which is useful, for instance, for tracing their behaviour.

4 Architecture

This section presents the architecture of I3P and analyzes how that architec-
ture contributes to the desirable non-functional properties identified in Sec-
tion 2. In this way, it clarifies how engineering considerations have led to the
overall system of Section 3. Each of the subsections describes a particular
design decision or component, and then proceeds to discuss resulting the non-
functional properties. For the property of traceability, we remark in advance
that the components, type-set in italics, correspond to concrete classes of the
implementation. Further structure is omitted for brevity here, but is provided
in the JavaDoc comments of the available source code.

4.1 Overview

Figure 2 gives an overview over the main components of I3P. The system is
divided into three layers. At the top, the user interface layer contains the
actual widgets from Section 3 that the user interacts with.

The infrastructure layer contains all of the functionality of I3P: proof docu-
ments and ML files are stored, as well as the different installations and runtime
options. The prover manager controls the life-cycle of the prover, i.e. it starts
and stops the prover as requested. The file resources component tracks the

5



Gast

Fig. 2. Overview of the I3P Architecture

files loaded by the prover to enable the UI layer to prevent modifications if
necessary.

The prover communication layer encapsulates the access to the prover pro-
cess. A prover driver enables the prover manager to start a process for a
specific installation and set of options. The driver also lets the installation
manager examine an installation, for instance to list the available logics. When
a prover is started, the prover instance hides the inter-process communication,
in particular the physical protocol in use.

4.2 Document View Separation

The overview in Section 4.1 highlights a central feature of the I3P architecture:
the strict division between the infrastructure layer and the user interface layer.
We will discuss this separation and its consequences for the resulting non-
functional properties before proceeding further, because it influences many
later design design decisions.

The decision is based on the Document-View variant of the Model-
View-Controller pattern [14]. The “document” in this pattern contains
the data structures, algorithms, and business logic of the application. The
“view” is a thin UI component that merely enables the user to access this
functionality. In the other direction, the “document” does not contain any
code that relates to the “view”.

The resulting division between infrastructure and UI layer is known to yield
several of the desirable non-functional properties [14]. First, testability is much
enhanced, because the core logic of the application is contained in ordinary,
non-UI classes which can be accessed by automated unit tests. Furthermore,
test-driven development (TDD; [7]) is enabled because the infrastructure’s
functionality can be specified as a standalone product. As others before, we
have found TDD to be an invaluable to boost productivity.

Testability has enabled us to write around 350 unit tests for different parts
of I3P. With a large test coverage, the implication of testability is change-
ability (Section 2): we can be confident about making changes because any
introduced failures will be spotted early, the next time that the automated

6



Gast

tests are run. In particular, re-factoring the software [17] is simple, which
tends to clarify the overall structure and thus enhances traceability and main-
tainability.

The document-view separation yields yet another benefit for changeability:
since the main functionality independent of the UI, it becomes simple to adapt
the UI to the user’s expectations. Note that this possibility crucially relies on
the fact that tests target the infrastructure layer, not the UI layer.

Finally, the separation enables re-usabilty and portability, because the
main part of the implementation remains independent of the concrete user
interface. For instance, the I3P infrastructure has been successfully re-used
to obtain an Eclipse-based Isabelle interface [22], which is desirable from the
perspective of integrated verification environments [24,13,15].

This list of non-functionality properties shows clearly that a strict document-
view separation is crucial, since it already achieves many of the goals set in
Section 2. Furthermore, we have found that the overhead in development time
introduced by the separation is outweighed by far by the entailed benefits.

4.3 Event-based Design

A second principle adhered to throughout the design of I3P is the reliance
on events. All components in Figure 2 offer generic notification mechanisms
that signal changes in their state (see Observer [18]): the file resources
fire events for newly opened, loaded, and closed files, the prover manager
offers notifications about the startup and shutdown of the prover, the proof
documents have a detailed model of user- and prover access (Section 4.5),
and so on. The central guideline in this context is to have components define
their supported events in terms of their own specification, without considering
possible recipients of the notification.

Event-based design yields several benefits: the software becomes testable,
because the components defining events can be used independently of the
context receiving events in the application. In the other direction, the recip-
ients of the events can be tested by generating events directly in unit tests.
Testability then enables changeability and maintainability, as before.

A further contribution of event-based design is its role in enabling exten-
sibility, as discussed below.

4.4 Enabling Extensibility

I3P employs the concepts developped for object-oriented frameworks [25] and
the Interceptor pattern [29], which can be seen as a concise summary of
the main points of frameworks, to enable extensibility. In these approaches,
a framework is a platform that provides mechanisms that are common for a
family of software products. The specific applications are created as extensions

7



Gast

to this platform. The interface between the framework and its extensions is
defined in an event-based way: the framework specifies some abstract state,
such as the file resources or proof documents in Section 4.1. It also defines
events as changes in that state, and notifies interested extensions about them.

An prerequisite for extensibility is that the programming platform supports
some form of run-time-loadable modules which can interact an well-defined
ways. The Netbeans platform [12], on which I3P builds, offers a particularly
lightweight module system. Modules can place ordinary Java objects into a
central system file system. Other modules can then retrieve these objects from
the system file system with a few lines of code and interact with them directly.
Providing extension points is therefore as easy as specifying some path in
the file system where extension objects must be deposited, and defining an
interface expected of these objects. Whenever extension points are mentioned
subsequently, this mechanism is employed.

Extensibility itself is thus implemented in a traceable manner: all com-
ponents in Figure 2 define event models, which enables component-wise ex-
tensibility. Beyond that, a central event dispatcher retrieves interested event
receivers from sub-folders of Events in the system file system. It thus re-
flects the concept of a framework defining a global event model to be used by
application-specific extensions.

Finally, we emphasize that also the core functionality of I3P, as presented
in Section 3, employs these extension mechanisms for the implementation.
The mechanisms have therefore been validated in practical scenarios, they are
not merely design ideas to be evaluated in later stages of the development.

4.5 Proof Documents

Traceability requires that conceptual elements of the proposed solution map
to elements in the design and implementation. A central instance of this
principle is the treatement of proof documents in I3P. The figure below depicts
the adopted model: a proof document is an ordinary text document which is
partitioned into a sequence of commands, such that each command can be
sent to the prover separately.

Commands have attached a set of slots which associate arbitrary data with
commands efficiently. Slots address extensibility in that other modules can
register new types of slots and access them in a type-safe manner. For in-
stance, prover drivers will commonly want to store private information with
commands, and the theory explorer (Section 4.1) deposits the document’s tree

8



Gast

structure in yet another slot. Slots support event-driven design, thus realizing
its described benefits, by a generic slot changed event.

One of the slots is the command state, which models the processing of a
command by the prover. As motivated in [20], the state distinguishes between
idle commands, which can be edited by the user, and sent commands, which
have been transmitted to the prover. The processing itself is further divided
into sub-states queued, being processed, and finished, which is again split into
successful and erroneous. The command state also contains the sequence of
messages generated by the prover during processing (see Section 4.6). When
the UI wants to execute or undo some command, it is sufficient to set its state
to revoke or send [20], which simplifies the implementation and addition of
UI-level functionality.

I3P defines a consistent, lightweight mechanism for maintaining the parti-
tioning of the document into commands.

The proof documents in the system notify a structuring task about occurring
textual changes, along with the command in which they occur. The struc-
turing task runs in a separate thread and queues the reported commands. It
delegates the processing to a structure maintainer associated with each proof
document. The maintainer is responsible for updating the command parti-
tioning. Since it can only split and join commands, the commands always
form a partitioning. To decide about changes, the structure maintainer can
access the entire proof document, for example to handle comments in a single
run or to examine adjacent commands.

Executing the structure maintainer in a separate thread allows it to spend
any amount of processing time without stalling the user interface. This de-
cision reduces the complexity of the maintainer, compared to the earlier ap-
proach [20] of immediate reactions. However, the user and the structure main-
tainer now access the document concurrently, which requires proper synchro-
nization. I3P offers a generic solution through a document mirror. The mirror
collects the textual edits in the document and translates any positions ac-
cessed by the structuring task accordingly. If a clash with an edit is detected,
the maintainer is re-started. 1

1 While the change notifications for the structuring task are sent asynchronously and are
queued, those for the document mirror must be sent synchronously, while the editor holds
the document lock. Otherwise, the structuring task might obtain the lock and access text
at the wrong positions before the mirror has received the update.

9



Gast

Proof documents are a main source of events in I3P: structural modifications
and state changes are reported to the registered proof document listeners ;
structure listeners and state listeners receive the respective subsets.

This particular instance of event-based design yields, of course, the gen-
eral benefits discussed in Section 4.3. Furthermore, the notifications sent by
proof documents have proven sufficient to implement the connections to all
other components, including the entire UI layer and the prover (Section 4.6).
Further, having these events available enables extensibility by UI components
that display the state of commands.

4.6 Prover Interaction

A central design consideration is the expected interaction between the prover
and the interface, and the relative distribution of functionality between them.
One possible view is that the prover can basically execute and undo commands
[2,24], and one can parameterize the interface accordingly. Going one step
further, one can explore how much useful functionality can be achieved by
the interface without support from the prover [19]. These approaches, by
intention, do not target further capabilities of the prover.

I3P, on the other hand, starts from the premise that the main role of the
interface is to make the functionality present in the prover available to the
user. The mechanisms discussed subsequently are therefore very general and
make minimal assumptions about the prover.

The central linking point is the prover driver, which creates a prover in-
stance when the prover is started (Section 4.1). The prover instance encap-
sulates any communication, and in particular the protocol used. This allows
the driver to also access special and new functionality in prover-specific ways.

The main, but very weak, assumption that I3P makes is that the communica-
tion is message-based, i.e. the prover instance sends commands and receives
messages in return. Different types of messages are supported, among them
normal output (e.g. for goals), error and warning messages, and debug and
tracing messages. These are modelled after Isabelle’s defined output channels.
A message consists of the message text and a set of markups, which might in-
dicate different types of identifiers. The driver is, of course, free to use internal
messages for special funcitonality without relaying them to I3P.

Towards supporting a wide range of functionality, I3P defines the concept
of prover features. A feature is offered as a representative of a specific capa-
bility of the prover (see Proxy [18]), which communicates with the prover in

10



Gast

the background to access the functionality. Other components in the inter-
face may then rely on different prover capabilities by simply requesting the
corresponding feature. We will now use the features offered by the current
Isabelle-2009-1 driver for demonstration purposes.

The Executor feature represents the execution of commands in proof doc-
uments. Besides life-cycle methods to connect and disconnect executor and
framework (see Component Configurator [29]), it allows the prover to
receive all event related to proof documents (Section 4.5) as well as about
files opened in the editor (Section 4.1). The prover instance is free to re-
act in any appropriate way, by changing the commands’ states to indicate
processing. Due to the event-based design, UI layer will react to these state
changes by highlighting and locking of commands in the theory editors. The
Isabelle-2009/-1 driver emulates the traditional linear processing model with
multi-theory support.

Complementary to command execution, the FileReporting feature of-
feres notifications whenever the prover loads or releases files. This feature is
requested by the file resources component (Section 4.1) to reflect the current
state on the interface side.

The StructureMaintainer feature is a Factory [18] for the structure
maintainers attached to proof documents. As described in Section 4.5, these
maintainers receive events about textual changes and re-examine commands
to split and join them. The Isabelle-2009-1 driver supports dynamic keyword
recognition, thus avoiding the need to maintain external configuration files.

The ProofHierarchyClassification feature allows the interface to clas-
sify commands into different categories (start of proof, end of proof, top-level,
etc.). This is used, for instance, to reconstruct the tree structure for the the-
ory explorer and to indent commands in the theory editor (Section 4.1). The
DynamicKeywords feature offers access to all currently defined keywords and
their classification in isolation. The syntax highlighting for theories (Section 3)
uses this feature to adapt the presentation accordingly.

The RuntimeOptions feature defines a hierarchical grouping of runtime
options and offers proxy objects to set the option values conveniently. It is
accessed both by the local options and the options dialog (Section 3).

This list of features demonstrates how specific prover capabilities can be
represented in the interface without fixing a protocol. It is a cornerstone to ex-
tensibility: when Isabelle acquires new functionality that should be accessible
to the user, the prover defines and provides a corresponding feature which is
then requested by a suitable UI layer extension. At the same time, testability
is enhanced because unit tests can be written for the limited functionality of
each feature in isolation.

I3P is also extensible by new drivers: the prover manager component scans
the Drivers directory in the system file system (Section 4.4) to retrieve any

11



Gast

installed drivers. Similarly, the installation manager (Section 3) retrieves in-
stallation types from the Installations directory. Both drivers and instal-
lation types can therefore be supplied by modules developed independently of
the I3P core.

5 Related Work

The engineering considerations discussed in this paper — apart from re-
usability — have not been addressed explicitly in the literature. Therefore,
this section analyzes existing user interfaces from our perspective. Interest-
ingly, we find that many architectural decisions in the related studies could in
principle be used to achieve desirable non-functionall properties.

The Proof General project [1] aims at re-usability of the prover interface.
With support for Isabelle, Coq, LEGO, PhoX and experimental drivers for
several others, this goal has been achieved very successfully. The method of
adapting the interface is the customization of around 150 variables [2] which
characterize the communication with the prover. In comparison, I3P does not
make assumptions about the precise nature of the prover protocol but allows a
prover driver component to encapsulate the communication. Combined with
the concept of features (Section 4.6), this approach is more flexible since dif-
ferent ways of prover interaction can be implemented and new functionality
besides undo/redo of theory commands can be made available. Furthermore,
I3P’s prover drivers are testable as standalone components, such that devia-
tions between prover versions can be detected early. It is interesting to note
that the effort of writing an I3P driver and customizing Proof General are
roughly the same (≈ 3000 lines of code) in the case of Isabelle.

The PGKit framework [4] proposes an XML-based communication proto-
col for provers and display components. A broker component mediates the
communication between provers and interfaces, manages the open proof doc-
uments, and synchronizes the user edits and the prover execution. This archi-
tecture aims at re-usability, as Proof General does, but also addresses exten-
sibility by new display components. However, the protocol does not contain
mechanisms for accessing prover-specific functionality. Furthermore, display
components in PGKit are heavy-weight in that they need to implement the
PGPIP protocol, while I3P UI extensions can directly access the objects in the
infrastructure layer. In principle, the defined protocol should enable testabil-
ity of single components, and the properties and benefits entailed by it, but
this is not discussed in the published work.

Charles and Kiniry [24] address re-usability by providing a minimal inter-
face which can be adapted to different provers by prover-plugins. Their inter-
face/prover communication is limited to traditional undo/redo of commands
and in broad terms follows the adaptation model of Proof General/Emacs [2].

12



Gast

There are no mechanisms to expose prover-specific functionality in the inter-
face. The architecture of the Eclipse-based interface itself is not discussed,
thus neglecting traceability; if a document-view separation is followed in the
implementation, the corresponding benefits could be claimed for the software.
While the definition of clear interfaces for prover plugins enables their inde-
pendent testability, testing is not discussed.

Lüth and Wolff [27] consider re-usability of a truely graphical interface for
Isabelle. Their generic implementation [27, §4.2] is given as an SML functor,
integrated into the Isabelle heap image, which can be instantiated for different
logics and applications. The functor implements a document-view separation
(Section 4.2), but the potential benefits of this decision are not discussed.

Kaliszyk [26] proposes to access provers through web-services. While the
technical foundations of the employed AJAX and DOM APIs are discussed
in detail, it remains unclear whether the concrete protocol is private or fixed
and public. In the latter case, testability of the server components would be
enabled. Furthermore, the benefits of the document-view separation, which is
implicit in employing web-services, could also be realized in this system.

Bertot and Théry [11] describe a generic, thus re-usable approach to build-
ing sopisticated graphical user interfaces, including proof-by-pointing mecha-
nisms. Their presentation very clearly exhibits the document-view separation
(in particular [11, §2.1, §3.1, §6.4]), and extensibility is identified as a clear
goal, albeit in the restricted form of configuration of generic mechanisms by
data [11, §3.2,§4.3].

In summary, the goals for prover interfaces identified in Section 2 have been
discussed, though mostly implicitly, in various previous studies. However, the
ways to obtain them have always been derived from the specific application,
rather than from desirable software quality attributes and general software
engineering principles, and the potential further benefits of applying these
principles have therefore been neglected. The relative contribution of this
paper is thus a set of strategies for realizing these benefits, which is applicable
to prover interfaces in general.

6 Conclusion

We have analyzed the task of constructing a prover interface from an engi-
neering perspective: starting from a set of goals that prover interfaces must
attain, we have identified relevant quality attributes, or non-functional proper-
ties, that the interface software should possess. Among them, maintainability
and changeability are perhaps the most pressing concerns for the practical
developments, while re-usability and extensibility address the question of how
the effort once invested can yield the maximum benefit.

We have then demonstrated that these properties can be achieved for a

13



Gast

user interface software at the example of I3P, a newly developed interface for
Isabelle. Based on the principles of document-view separation and event-based
design, I3P’s architecture has been presented to the extent of detail where the
desirable non-functional properties become visible.

This paper thus addresses cross-cutting issues that are relevant for the
development for any serious prover interface, but which have nevertheless been
discussed in the literature only rarely, and mostly implicitly. Our overview of
related work shows, however, that a consideration of the engineering questions
could lead to an improvement of other interfaces as well.

References

[1] David Aspinall. Proof General: A generic tool for proof development. In Tools and Algorithms
for the Construction and Analysis of Systems (TACAS ’00), number 1785 in LNCS, 2000.

[2] David Aspinall and Thomas Kleymann. Adapting Proof General. http://proofgeneral.inf.
ed.ac.uk/releases/ProofGeneral/doc/PG-adapting.pdf, January 2008.

[3] David Aspinall, Christoph Lüth, and Ahsan Fayyaz. Proof General in Eclipse: System and
architecture overview. In Eclipse Technology Exchange Workshop at OOPSLA 2006, 2006.

[4] David Aspinall, Christoph Lüth, and Daniel Winterstein. A framework for interactive proof.
In Calculemus ’07 / MKM ’07: Proceedings of the 14th symposium on Towards Mechanized
Mathematical Assistants, pages 161–175, Berlin, Heidelberg, 2007. Springer-Verlag.

[5] David Aspinall, Christoph Lüth, and Burkhart Wolff. Assisted proof document authoring.
In Mathematical Knowledge Management 2005 (MKM ’05), number 3863 in Springer LNAI,
pages 65–80, 2005.

[6] Bass, Clements, and Kazman. Software Architecture in Practice. Addison-Wesley, 2nd edition,
2003.

[7] Kent Beck. Extreme Programming Explained: Embrace Change. Addison-Wesley Longman,
Amsterdam, 1999.

[8] Yves Bertot. The CtCoq system: Design and architecture. Formal Aspects of Computing,
11(33):225–243, 1999.

[9] Yves Bertot, Gilles Kahn, and Laurent Théry. Proof by pointing. In M. Hagiya and J. C.
Mitchell, editors, Theoretical Aspects of Computer Software, number 789 in LNCS, pages 141–
160. Springer, 1994.

[10] Yves Bertot, Thomas Kleymann-Schreiber, and Dilip Sequeira. Implementing proof by pointing
without a structure editor. Technical Report ECS-LFCS-97-368, Department of Computer
Science, Edinburgh University, October 1997.

[11] Yves Bertot and Laurent Théry. A generic approach to building user interfaces for theorem
provers. J. Symbolic Computation, 25:161–194, 1998.

[12] Tim Boudreau, Jaroslav Tulach, and Geertjan Wielenga. Rich Client Programming: Plugging
into the Netbeans platform. Prentice Hall, 2007.

[13] Lilian Burdy, Antoine Requet, and Jean-Louis Lanet. Java applet correctness: A developer-
oriented approach. In Keijiro Araki, Stefania Gnesi, and Dino Mandrioli, editors, FME, volume
2805 of LNCS, pages 422–439. Springer, 2003.

[14] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael Stal.
Pattern-oriented Software Architecture: A System of Patterns, volume 1. Wiley & Sons, 1996.

14

http://proofgeneral.inf.ed.ac.uk/releases/ProofGeneral/doc/PG-adapting.pdf
http://proofgeneral.inf.ed.ac.uk/releases/ProofGeneral/doc/PG-adapting.pdf


Gast

[15] Patrice Chalin, Perry R. James, and George Karabotsos. Jml4: Towards an industrial grade
ive for java and next generation research platform for jml. In Natarajan Shankar and Jim
Woodcock, editors, VSTTE, volume 5295 of Lecture Notes in Computer Science, pages 70–83.
Springer, 2008.

[16] Dominik Dietrich, Ewaryst Schulz, and Marc Wagner. Authoring verified documents by
interactive proof construction and verification in text-editors. In Intelligent Computer
Mathematics, volume 5144 of LNAI, pages 398–414. Springer, 2008.

[17] Martin Fowler. Refactoring: Improving the Design od Existing Code. Addison-Wesley, 2000.

[18] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns – Elements
of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[19] Holger Gast. An architecture for extensible Click’n Prove interfaces. In Klaus Schneider and
Jens Brandt, editors, Theorem Proving in Higher Order Logics: Emerging Trends Proceedings,
number 364/07. Department of Computer Science, University of Kaiserslautern, August 2007.

[20] Holger Gast. Managing proof documents for asynchronous processing. In User Interfaces
for Theorem Provers (UITPs 2008), volume 226 of ENTCS, pages 49–66. Elsevier Science
Publishers B. V., 2009.

[21] Holger Gast. I3P web page. www-pu.informatik.uni-tuebingen.de/i3p, 2010.

[22] Axel Gneiting. I3P/Eclipse. Master’s thesis, Wilhelm-Schickard-Institut, University of
Tübingen, 2010.

[23] Dominik Haneberg, Simon Bäumler, Michael Balser, Holger Grandy, Frank Ortmeier, Wolfgang
Reif, Gerhard Schellhorn, Jonathan Schmitt, and Kurt Stenzel. The user interface of the KIV
verification system - a system description. In Proceedings of the User Interfaces for Theorem
Provers Workshop (UITP 2005), 2005.

[24] J. Kiniry J. Charles. A lightweight theorem prover interface for eclipse. In User Interfaces for
Theorem Proving, 2008.

[25] Ralph E. Johnson. Components, frameworks, patterns (extended abstract). In Proceedings
of the 1997 symposium on Software reusability, pages 10–17, Boston, Massachusetts, United
States, 1997. ACM.

[26] Cezary Kaliszyk. Web interfaces for proof assistents. In Proceedings of the 7th Workshop
on User Interfaces for Theorem Provers (UITP 2006), volume 174 of ENTCS, pages 87–107.
Elsevier, 2007.

[27] C. Lüth and B. Wolff. Functional design and implementation of graphical user interfaces for
theorem provers. Journal of Functional Programming, 19(2):167–189, 1999.

[28] Robert C. Martin. Clean Code. Prentice Hall, 2009.

[29] Douglas Schmidt, Michael Stal, Hans Rohnert, and Frank Buschmann. Pattern-oriented
Software Architecture: Patterns for concurrent and networked objects, volume 2. Wiley &
Sons, 2000.

[30] Ben Shneiderman. Designing the User Interface: Strategies for Effective Human-Computer
Interaction. Addison-Wesley, 3rd edition, 1998.

[31] Laurent Théry, Yves Bertot, and Gilles Kahn. Real theorem provers deserve real user-
interfaces. In Proceedings of the fifth ACM SIGSOFT symposium on software development
environments, pages 120–129, 1992.

[32] Marc Wagner, Serge Autexier, and Christoph Benzmüller. PlatΩ: A mediator between text-
editors and proof assistance systems. In Proceedings of the 7th Workshop on User Interfaces
for Theorem Provers (UITP 2006), volume 174(2) of ENTCS, pages 87–107. Elsevier, 2007.

[33] M. Wenzel. private communication.

15

www-pu.informatik.uni-tuebingen.de/i3p

	Introduction
	Desirable Non-functional Properties
	System Description
	Architecture
	Overview
	Document View Separation
	Event-based Design
	Enabling Extensibility
	Proof Documents
	Prover Interaction

	Related Work
	Conclusion
	References

