
UITP 2010

Integrating Systems around the User:

Combining Isabelle, Maple, and QEPCAD

in the Prover’s Palette

Laura I. Meikle1 Jacques D. Fleuriot2

CISA, School of Informatics
University of Edinburgh

UK

Abstract

We describe the Prover’s Palette, a general, modular architecture for combining tools for formal
verification, with the key differentiator that the integration emphasises the role of the user. A
concrete implementation combining the theorem prover Isabelle with the computer algebra systems
Maple and QEPCAD-B is then presented. This illustrates that the design principles of the Prover’s
Palette simplify tool integrations while enhancing the power and usability of theorem provers.

Keywords: theorem proving, computer algebra, UI, Isabelle, Eclipse, QEPCAD, Maple.

1 Introducing the Prover’s Palette

Interactive theorem proving today permits the verification of sophisticated
theorems and complex algorithms, although the process remains cumbersome
and time-consuming. We believe that in many instances, access to other
tools such as Computer Algebra Systems (CAS) can accelerate this process.
While the past decade has seen significant advances in combining provers with
external tools, as described in previous work [5], the increased complexity
of current proof developments places new demands and challenges on tool
integrations.

We begin with the premise that an integration’s primary goal is to acceler-
ate the proof development process. To date, this has been achieved primarily

1 Email: lauram@dai.ed.ac.uk
2 Email: jdf@inf.ed.ac.uk

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

file:lauram@dai.ed.ac.uk
file:jdf@inf.ed.ac.uk


Meikle

by integrations which can automatically simplify expressions and discharge
subgoals [7][10]. With more complicated verification tasks—and with more
mathematicians using provers—we believe that the process of formal proof is
best served by tool integrations which are able to enhance a user’s understand-
ing of a problem. To achieve this, it is important that integrations support
multiple modes of interaction: the user should be given the option to use ex-
ternal systems in a fully automated way, but they should also have the option
to modify how that system is being used. A novice user can then benefit
from a variety of proof assistants, even if he is not familiar with them, while
the expert user is not hindered from accessing the full richness of these tools.
This can be essential for some problems, as even the best fully automated
integrations cannot always tune the parameters appropriately. Furthermore,
by allowing visibility and modifiability to more aspects of the tool integration,
the user is given greater flexibility in exploring the problem. We believe that
a semi-interactive integration framework now has a vital role to play: the
framework should support automatically configuring settings appropriate to a
specific problem but also emphasise usability in exploring and changing these
values, all while maintaining consistency between systems.

This philosophy has led us to develop the Prover’s Palette, a user-centric
approach to tool integrations. A concrete implementation that combines Is-
abelle and QEPCAD-B, assisting the user in reasoning about real nonlinear
polynomials, has already been achieved [5]. In this paper, we apply our ap-
proach to a further systems integration in order to show that the design prin-
ciples apply more generally and that our architecture can be easily extended
to support more tools. In particular, we present an integration of Maple [9]
into the Prover’s Palette and show how its plotting capabilities can provide
significant insight into theorems being proven.

2 System Design

The key idea of our approach is to unify multiple tools through a cohesive user
interface (UI), allowing any relevant tool to be used at any point in the proof
process. This is accomplished by constructing a UI “View” widget for each
external tool. These Views sit alongside the proof script in the IDE, and:

• When the proof state changes, each View is notified by the framework and
is updated appropriately, automatically acquiring a translation in its native
language and a choice of appropriate default settings.

• Each View can be configured to run in “novice” mode, using sensibly-chosen
default settings and running with a single user-click (some can be further
configured to run automatically, appearing only when they yield a result).

• By exposing an optional sequence of “tabs”, each View also allows full

2



Meikle

inspectability and customisation of the translation and settings.

• Each View presents the results of the external system’s computation in an
integrated form, commonly a command in the prover’s language which can
then be automatically inserted into the proof script.

We have implemented this design in Java, making each View a plug-in to
the Eclipse Proof General Kit [1], leveraging its broker structure, and tar-
geting the Isabelle theorem prover [8]. The Prover’s Palette framework also
uses libraries from the Feature Wizard [4] to support translation and the PG
ProofScriptEditor API for post-processing insertion into the proof script.

The implementation supplies abstract superclasses which encapsulate com-
mon functionality, including defining the View and tabs, tracking and trans-
lating proof state changes, modifying the proof state where necessary (e.g. ex-
panding definitions, converting to prenex normal form), and inserting results
in various different ways (e.g. Oracle, subgoal, instantiation). This framework
minimises the additional code required to integrate any new external tool with
the Prover’s Palette. We demonstrate this in the next section by describing
our implementation which adds Maple support to our system.

3 Using Maple in the Prover’s Palette

Maple is a powerful and popular CAS used to offer insight into mathematical
problems. For this reason, we selected it as the second tool to integrate into
the Prover’s Palette. We will illustrate our approach—and this integration—
through a real-world example making use of Maple’s plotting capabilities.
Figure 1 shows a screenshot of the prover IDE with the new Maple view:

Figure 1. Reasoning with the Prover’s Palette: Isabelle, QEPCAD and Maple in the IDE

3



Meikle

The proof script in Figure 1 revisits a collision problem described by Collins
and Hong [3]. This involves robot motion planning and queries whether a
moving circle (1) and a moving square (2) will ever collide, specifically asking
whether ∃ t x y. t ≥ 0 ∧ (1) ∧ (2):

(1) (x− t)2 + y2 ≤ 1

(2) −1 ≤ x − 17
16

t ≤ 1 ∧ −9 ≤ y − 17
16

t ≤ −7

Relying solely on a theorem prover, this can be a difficult proof, with the
user having to contend with questions ranging from whether the objects are
defined correctly through to how to apply the myriad lemmas to reduce the
algebra. With the Prover’s Palette, the Maple View continually updates to
reflect the current proof goal state: the user can then, for example, choose
to plot these equations (on the “Problem” tab of the Maple View, as shown
in Figure 1). The integration automatically converts the problem—stripping
away quantifiers, breaking up conjuncts, and converting inequalities—then
determines which equations are suitable for inclusion and which plot type and
command is appropriate (e.g. ImplicitPlot, ImplicitPlot3D, animate) 3 .

With the collision problem, the Maple integration defaults to a 2D anima-
tion. It has automatically determined the variables for each axis and deduced
that five out of the six constituent equations should be plotted. In this plot
configuration, t = 0 does not make sense; however the user is free to change
the variables-to-axes mappings, and if t and x are swapped — so that t is plot-
ted along the x-axis and we animate over time x — then the list of enabled
equations is updated to include t = 0, although the plots may be unintuitive!

Figure 2. Maple Animated Plot

The user can then select the “Fin-
ish” button to send the plot command to
Maple. Alternatively the user can go to
the “Preview” tab to inspect the script to
be sent, making edits where desired: ap-
plying colours or labels, or even adding
additional equations. This tab also al-
lows cancelling the external process at any
time. Asking Maple to plot the collision
problem results in a new window contain-
ing an interactive animation of the circle
and square moving over time. Figure 2
shows a still of this animation where the
circle and square are colliding, confirming
that the problem is provable.

3 Due to space limitations, the automatic conversion and configuration to make problems
suitable for use with Maple is not covered here. The interested reader is referred to [6].

4



Meikle

Following the visual insight afforded by Maple, the user could also invoke
QEPCAD within the Prover’s Palette environment. Previously in [5], we
showed how QEPCAD can be used to confirm that the problem is “True”
(after simplifying the problem to remove division which QEPCAD does not
support). It can also generate witnesses (t=96

17
, x=96

17
and y = −1) which the

integration can instantiate into the proof with a single click.

4 Conclusion

By integrating Maple into the Prover’s Palette we have shown that the frame-
work can generalise to support other external tools. It would be interesting
to further extend the system to support other theorem provers that can be
made compatible with PG Kit; and with the advent of new Java-based prover
IDEs such NetBeans-based I3P, we believe our system has promise for even
wider integration. We have also shown that an interactive integration frame-
work is capable of enhancing the user’s understanding of proof problems. This
supports our hypothesis that the user is most empowered when a palette of
tightly integrated—yet customisable—tools is conveniently at their disposal.
A successful integration framework enables a deeper understanding of proof
obligations, freeing the user from the burden of tedious, mundane proof de-
tails, but without overly restricting what is possible. The Prover’s Palette
approach, with its central focus on the user, yields an extensible, powerful,
and easy-to-use proof environment.

References

[1] Aspinall D., C. Lüth, and D. Winterstein, A Framework for Interactive Proof. Towards
Mechanized Mathematical Assistants, Springer LNAI 4573 (2007), 161-175.

[2] Brown C. W., QEPCAD B: a program for computing with semi-algebraic sets using CADs,
SIGSAM Bulletin, 37 (2003), 97-108.

[3] Collins G. E., and H. Hong, Partial Cylindrical Algebraic Decomposition for Quantifier
Elimination, Journal of Symbolic Computation 12 (1991), 299-328.

[4] Heneveld A., Using Features for Automated Problem Solving, PhD Thesis, University of
Edinburgh, 2007.

[5] Meikle L. I., and J. D. Fleuriot, Combining Isabelle and QEPCAD-B in the Prover’s Palette,
AISC/MKM/Calculemus (2008), 315-330.

[6] Meikle L. I., The Formal Verification of Geometric Algorithms, to appear as PhD Thesis,
University of Edinburgh.

[7] Meng J., C. Quigley, and L. C. Paulson, Automation for interactive proof: first prototype, Inf.
Comput., 204: 10 (2006), 1575-1596.

[8] Paulson L. C., Isabelle: A Generic Theorem Prover, LNCS 828 (1994).

[9] Redfern M., and D. Betounes, “Mathematical Computing: An Introduction to Programming
Using Maple”, Telos Press, 2002.

[10] A. Tiwari, PVS-QEPCAD, www.csl.sri.com/users/tiwari/qepcad.html.

5


	Introducing the Prover's Palette
	System Design
	Using Maple in the Prover's Palette
	Conclusion
	References

