
UITP 2010

Interfacing Coq + SSReflect with GAP

Vladimir Komendantsky1

School of Computer Science
St Andrews University

St Andrews, KY16 9SX, UK

Alexander Konovalov1

School of Computer Science
St Andrews University

St Andrews, KY16 9SX, UK

Steve Linton1

School of Computer Science
St Andrews University

St Andrews, KY16 9SX, UK

Abstract

We report on an extendable implementation of the communication interface connecting Coq proof
assistant to the computational algebra system GAP using the Symbolic Computation Software
Composability Protocol (SCSCP). It allows Coq to issue OpenMath requests to a local or remote
GAP instances and represent server responses as Coq terms.

Keywords: Coq, GAP, Symbolic Computation Software Composability Protocol, OpenMath

1 Introduction

A theorem prover may significantly extend its functionality from the ability to
communicate with computer algebra systems (CAS). Examples may include,
but not limited to, retrieving objects from mathematical databases available
in CAS, or computing results that can not be derived using the the theorem
prover alone, but once known, may be verified in the prover or used as prover’s

1 {vk|alexk|sal}@cs.st-andrews.ac.uk

Preprint submitted to Electronic Notes in Theoretical Computer Science 9th April 2010

Komendantsky, Konovalov, Linton

axioms for further proofs. Such combinations may not only speed up prover’s
work, but also allow getting results that can not be obtained within any single
prover.

Developers of existing interfaces between theorem provers and CAS (we
mention some of them in Sec. 8) may select various ways. For example, a
prover may write CAS input files and then invoke it; the CAS will write
prover’s input to a file and exit; the prover will read it and perform further
actions. This works, but has fairly serious limitations. A better setup might
allow the prover to interact with other CAS while they run and provide a
separate interface to each possible external CAS. However, achieving this is
a major programming challenge, and an interface will be broken if the other
system changes its I/O format, for example.

In the EU Framework VI project “SCIEnce – Symbolic Computation In-
frastructure in Europe” (www.symbolic-computation.org) which is a major
5-year project that brings together CAS developers and experts in compu-
tational algebra, OpenMath, and parallel computations, a common standard
interface that may be used for combining computer algebra systems and any
other compatible software has been developed. It is aimed to provide an easy,
robust and reliable way for users to create and consume services implemented
in any compatible systems, ranging from generic services (e.g. evaluation of a
string or an OpenMath object) to specialised (e.g. lookup in the database; ex-
ecuting certain procedure). This interface is in fact a lightweight XML-based
remote procedure call protocol called SCSCP (Symbolic Computation Software
Composability Protocol, [8]) in which both data and instructions are represen-
ted as OpenMath objects, what was an obvious choice as a common way of
marshalling mathematical semantics. OpenMath [16] is a a well-established
flexible language built from only twelve language elements (integers, doubles,
variables, applications etc.). All the semantics is encapsulated in symbols
which are defined in Content Dictionaries (CDs) and are strictly separate
from the language itself. OpenMath was designed to be efficiently used by
computers, and may be represented in several different encodings, the most
commonly used of which is the XML representation.

SCSCP is now implemented in several computer algebra systems, including
GAP [14], KANT, Macaulay2, Maple, MuPAD, TRIP (see [7,9] for details)
and has APIs making it easy to add SCSCP interface to more systems. The
advantage of this approach is that any system that implements SCSCP can
immediately connect to all other systems that already support it. This avoids
the need for special cases and minimises repeated effort. In addition, SCSCP
allows remote objects to be handled by reference so that clients may work with
objects of a type that do not exist in their own system at all. For example,
to represent the number of conjugacy classes of a group only knowledge of
integers is required, not knowledge of groups. The SCSCP protocol (currently

2

www.symbolic-computation.org

Komendantsky, Konovalov, Linton

at version 1.3) is socket-based. It uses port number 26133, as assigned by the
Internet Assigned Numbers Authority (IANA)), and XML-format messages.

In the present paper we report about the prototype implementation of the
SCSCP client in Coq which allows to send OpenMath requests from Coq to a
local or remote GAP SCSCP server, and get back results to represent them as
Coq terms. This implementation provides an extendable and flexible frame-
work: in the future it may support more kinds of mathematical objects, and,
moreover, because of the SCSCP flexibility, in specific applications remote
procedures may be designed in a way that allows to avoid some OpenMath-
related restrictions. Another direction may be adding to Coq SCSCP server
features to be able to handle requests from other applications.

We discuss an example involving computation in GAP of roots of a polyno-
mial defined in SSReflect in Sec. 3. In Sec. 4 and Sec. 5, we give a presentation
of two features of Coq that lay behind the algebraic hierarchy of SSReflect: co-
ercions [19] and canonical structures [20]. In Sec. 6, we describe our approach
according to which the user takes care about programming the “interface”
for calls from Coq + SSReflect to GAP in the sense that they specify how
OpenMath requests to GAP are formed from data in Coq and how incoming
OpenMath objects will be translated to Coq terms. In particular, OpenMath
objects are constructed using the subclass information given by coercions,
while synthesis of a Coq term from a given OpenMath object re-uses the ca-
nonical structure mechanism. We allow for a manual definition of Coq terms
that provide helper information for the automated tactic that performs data
exchange between the two systems.

2 Translation from OpenMath to Coq

Translation from XML data respecting the DTD of the Predicative Calculus
of (Co-)Inductive Constructions (pCic; see [20], Chapter 4) to Coq can be
straightforward although routine [1]. On the contrary, there seems to be a
central problem with the representation of data sent by the computer algebra
system such as GAP [5,10]. Namely, the objects of the pCic are terms; even
proofs are terms constructed from smaller terms. The question is how to inter-
pret arbitrary non-pCic data that can come packaged in OpenMath objects.
Such data may not correspond to terms for the reason that computer algebra
data are not in general constructed but rather given, and we cannot establish
a constructive proof of how the values in the OpenMath object were obtained.

One possible approach to such a representation would be to translate Open-
Math data as axioms or values (the latter is the case of the command coq_gap

below in Sec. 8 due to S. Ould-Biha [17]). Therefore proofs of how values were
obtained are not needed. An extension of Coq with such a facility does not add
convenience to proofs but rather presents another way to call a GAP server.

3

Komendantsky, Konovalov, Linton

If calls to GAP are made possible from inside the Coq proof mode, it can be a
handy shortcut allowing to succeed with some proofs without respecting the
constructivity requirement, that is, such proofs would be based on axioms.

One can formally assign mathematical meaning to objects of Strong Open-
Math, a strict subset of OpenMath. Hence there is a chance that Strong
OpenMath objects can be mapped to the pCic by means of formal analysis.
However, we do not see a way to restrict or convert to Strong OpenMath the
set of objects generated by GAP.

To faithfully translate a given OpenMath object to the pure pCic with no
axioms one needs to represent that object in terms of the pCic. For example,
if GAP computes a group of permutations, one must have a constructive
definition of a group of permutations in the pCic rather than arrays of numbers
that would likely be the external GAP representation of such a group. We
are inclined to think that this is possible to satisfy at least partially if we take
group-theoretic definitions that already exist in SSReflect [11]. However, many
constructive objects of that kind depend on proofs (of algebraic properties, for
instance), which renders a fully automated translation impossible. Therefore
some form of user interaction is still required.

SSReflect is based on constructive solvability of problems over finite do-
mains using two-valued boolean logic (as opposed to infinite-valued construct-
ive one). Thus one can reduce a finite problem of sort Prop to an equivalent
one of type bool, with the notion of reduction provided by the reflection
relation below:

Inductive reflect (P : Prop) : bool -> Set :=

| ReflectT : P -> reflect P true

| ReflectF : ~P -> reflect P false.

This has a profound impact since this allows to reduce the complexity of proofs
in the library of finite algebraic structures [11].

3 Working example: roots of a polynomial

In SSReflect 1.2, the definition of a polynomial over a ring is the following:

Record polynomial (R : ringType) : Type :=

Polynomial {polyseq :> seq R; _ : last 1 polyseq != 0}.

A polynomial can then be seen as a sequence with non-zero last element. The
coercion polyseq of type ∀ R : ringType, polynomial R → seq R takes
polynomials over a ring to sequences (which are isomorphic to plain lists) on
that ring.

4

Komendantsky, Konovalov, Linton

For example, considering arithmetic modulo natural n on the finite set
{0, 1, . . . , n− 1}, a polynomial

p(x) = x3 − 1

over the field Z/3Z is constructed using the field type Fp_field (inheriting
from ringType) defined in the library zmodp.v of modular arithmetic. The
polynomial p(x) can be coerced into a sequence of ordinals which, in turn, can
be coerced into a sequence of natural numbers

Cons 2 (Cons 0 (Cons 0 (Cons 1 Nil)))

On the other side, to construct such polynomial in GAP and find its roots one
should perform the following steps:

gap> x:=Indeterminate(GF(3),"x");;

gap> f:=x^3-1;

x^3-Z(3)^0

gap> RootsOfUPol(f);

[Z(3)^0, Z(3)^0, Z(3)^0]

We will return to this example in Sec. 6 and 7 to illustrate SCSCP procedure
calls issued by Coq and corresponding responses from the GAP server.

4 Type inference with subclasses

In a type-theoretic proof system, type-checking is a problem of deciding whether
a typing judgement is derivable according to the rules of the system. Although
this problem is undecidable in general, it is decidable for most systems of in-
terest, in particular, for injective ones [4]. In proof assistants, this job is
delegated to the module known as type-checker.

Another related problem is type inference. It consists of inferring types
that have not been explicitly specified by the user, that is, synthesising or con-
straining omitted subterms in such types. We are particularly interested in
the ability of type theoretic proof assistants to recognise mathematical abuse
of notations which is quite handy in situations when the same mathematical
object has to be viewed at different levels (e.g., in a hierarchical implementa-
tion of a mathematical theory such as SSReflect). This ability is provided by
the module known as refiner.

The subtype relation ≤ is derived in the pCic as a proof convenience. It
can be characterised using the rule below:

E[Γ] ` t : A E[Γ] ` cA,B : A ≤ B

E[Γ] ` (cA,Bt) : B

This can be defined in terms of the pCic [19]. An inheritance class (class)

5

Komendantsky, Konovalov, Linton

is either a term of type ∀ (x1 : A1) . . . (xn : An), s with n parameters or
one of the abstract inheritance classes SORT and FUN, the classes of sorts and
functions respectively. A partial function ClassOf from terms to inheritance
classes is defined as follows:

ClassOf s = SORT

ClassOf (∀ x : A, B) = FUN

ClassOf (C t1 . . . tn) = C if C is a class with n parameters

undefined otherwise

Given classes C and D with n and m parameters respectively, a term
f can be declared as a coercion with domain C and codomain D, denoted
f : C � D, if its type has form

∀ (x1 : A1) . . . (xn : An) (y : (C x1 . . . xn)), (D u1 . . . um)

and C is neither SORT nor FUN. Let t : C t1 . . . tn be a well-typed term inhab-
iting the class C. We can define the application of f to t as f@t = f t1 . . . tn t.
The type of this application is denoted f{t} and is Du′1 . . . u

′
m where u′i =

u′i[y := t][xn := tn] . . . [x1 := t1], for 1 ≤ i ≤ m.

A class inheritance graph ∆ has classes as nodes and coercions between
those classes as edges. A coercion path is given by the composition of k
elementary coercions, for k ≥ 0, that is, f1 ◦ · · · ◦ fk. A class C is said to be
a subclass of D in ∆ whenever there is a coercion path in ∆ from C to D.
One also says that C inherits from D. The graph is represented as a list of
coercions; the classes and paths are inferred.

The type-checking algorithm with inheritance takes as input some envir-
onment E, context Γ, coercion graph ∆ and a term t and outputs the explicit
term t′ and T such that t′ : T obtained by application of appropriate coercions
to t (which is also called the implicit term). A typing judgement for this can
be written E[Γ]∆ ` t⇒ t′ : T .

In order to transform a implicit terms to explicit ones, an algorithm is
defined in [19] to insert appropriate coercions. The function is applied only if
the term in question is not in the explicit form. The algorithm is partial and
fails if case match is not successful. The following properties of the typing
algorithm are known:

• correctness of the algorithm: If E[Γ]∆ ` t ⇒ t′ : t′ then t is a well-typed
term and T ′ is its inferred type;

• conservativeness of extension with respect to implicit typing judgements
`I : If E[Γ] `I t : T then E[Γ]∆ ` t⇒ t : T for all coercion graphs ∆.

6

Komendantsky, Konovalov, Linton

5 Canonical structure hints

A general approach to hints in unification was introduced in [2,18]. A general
unification hint has kind

?x1 := H1 . . . ?xn := Hn

P ≡ Q

where P ≡ Q is a type equivalence pattern with free variables ?v such that
{?x1 , . . . , ?xn} ⊆ ?v, all of ?xi

being distinct, and Hi cannot depend on any of
the pattern variables ?xj

for 1 ≤ i ≤ j ≤ n.

In Coq, there is a dedicated mechanism to deal with unification problems
of the specific kind

π ?1 . . . ?n ≡ t

where π is one of the projectors created by the declaration of a record type,
?1, . . . , ?n (partially) unknown arguments and t the known value of this pro-
jection applied to the arguments. This mechanism is provided by canonical
structures. A canonical structure [20] is a purposely marked instance of a
record (that possibly contains functional abstractions at the topmost level).
The type checker employs such marked instances when attempting to solve
unification problems. This can be expressed in a rule below:

π = HeadConstant t ?1 := t1 . . . ?n := tn

π ?1 . . . ?n ≡ t

where t1, . . . , tn are terms that appear as arguments of the head constant of
t. The actual implementation in Coq has further aspects such as unifica-
tion strategies (e.g., delayed expansion of defined constants) and treatment of
functional records.

The following example quotes the standard equality type of SSReflect,
whose definition follows the SSReflect class-mixin design pattern, and then
declares unification hints for the equality structure on the standard type nat:

Module Equality.

Definition axiom T e := forall x y : T, reflect (x = y) (e x y).

Structure mixin_of (T : Type) : Type := Mixin {

op : rel T;

_ : axiom op}.

Notation class_of := mixin_of (only parsing).

Structure type : Type := Pack {

sort :> Type;

_ : class_of sort;

_ : Type}.

7

Komendantsky, Konovalov, Linton

...

Definition pack T c := @Pack T c T.

End Equality.

Definition eq_op T := Equality.op (Equality.class T).

Lemma eqnP : Equality.axiom eqn. ... Qed.

Canonical Structure nat_eqMixin := Equality.Mixin eqnP.

Canonical Structure nat_eqType :=

Eval hnf in Equality.pack nat_eqMixin.

Thanks to the declaration of nat_eqType, the notation @eq_op _ 0 1, with
the implicit type argument being omitted, will be typed as

@eq_op nat_eqType 0 1

The latter is βιδ-convertible with eqn 0 1 where eqn is a boolean equality on
type nat defined in SSReflect.

6 User interface

Suppose we are submitting a request to the GAP server to compute the roots
of the polynomial in Sec. 3. The process of obtaining the OpenMath object
for the polynomial is rather straightforward thanks to the coercion graph.
In this object, one has powers of primitive elements of the finite field which
are essentially OpenMath integers. To represent them, the user provides the
following mappings:

• from relevant SSReflect field operations such as ring exponentiation (inher-
ited by the field structure) to pairs consisting of the appropriate content
dictionary and dictionary field (in the case of exponentiation, arith1 and
power respectively);

• from SSReflect ordinals to OpenMath integers (trivially by providing the
coercion from ordinals to the type nat).

A similar mapping from a polynomial to an OpenMath dictionary field should
also be provided. Mappings are represented by Coq terms with names of
OpenMath dictionaries and dictionary fields being qualified identifiers defined
in Coq. These identifiers are processed by the tactic and respective string
values are obtained for XML field names.

Having sent a request for the polynomial from the example in Sec. 3 to the
GAP server as we describe in Sec. 7, the tactic should receive a response con-
taining the following object, corresponding to the list of three multiplicative
neutral elements of the field Z/3Z:

8

Komendantsky, Konovalov, Linton

<OMOBJ>

<OMA>

<OMS cd="list1" name="list"/>

<OMA>

<OMS cd="arith1" name="power"/>

<OMA>

<OMS cd="finfield1" name="primitive_element"/>

<OMI>3</OMI>

</OMA>

<OMI>0</OMI>

</OMA>

<OMA>

<OMS cd="arith1" name="power"/>

<OMA>

<OMS cd="finfield1" name="primitive_element"/>

<OMI>3</OMI>

</OMA>

<OMI>0</OMI>

</OMA>

<OMA>

<OMS cd="arith1" name="power"/>

<OMA>

<OMS cd="finfield1" name="primitive_element"/>

<OMI>3</OMI>

</OMA>

<OMI>0</OMI>

</OMA>

</OMA>

</OMOBJ>

In order to represent this as a Coq term, the user should have defined transla-
tion rules for the corresponding entries in the OpenMath content dictionaries
in Coq. In general, representation of an OpenMath object in Coq depends
very much on the context. Therefore it is quite impossible to have a fixed set
of translation rules. Instead, we should provide means to the user to define
appropriate mappings.

For example, suppose that the context requires to represent this object as
a seq containing elements of the field Z/3Z. For that purpose we can use the
library zmodp.v of modular arithmetic, where such a sequence will be typed
seq (Fp_field pp), for p:nat and pp:prime p. The OpenMath entity list

will be mapped to the type forall (T:Type), seq T. The user must then
fulfil the proof obligation prime p, for the given p.

9

Komendantsky, Konovalov, Linton

7 Tactic implementation

We are developing a tactic implementation for data exchange between Coq
and the GAP server, where the latter should be started using GAP packages
SCSCP and OpenMath [6,14]. The tactic is being implemented as a Coq plug-
in module, with a possibility of dynamic loading by a Coq command language
request. The main client function initiates a TCP/IP socket connection, per-
forms the handshake according to the SCSCP specification and evaluates the
client callback function. The latter function composes and sends through the
output IO channel the SCSCP request using data provided as arguments to the
tactic, flushes the output channel and receives back the SCSCP packet con-
taining server response. All SCSCP packets consist of a sequence of OpenMath
XML objects and are enclosed in mandatory start and end tags. Therefore
receipt amounts to reading from the input channel all the OpenMath data
between these tags and parsing the data.

Request and response packages have similar structure. For example, a
request to find the roots of the polynomial from Sec. 3 may have the form

<OMOBJ>

<OMATTR>

<OMATP>

<OMS cd="scscp1" name="call_id"/>

<OMSTR>host:port:pid:string</OMSTR>

</OMATP>

<OMA>

<OMS cd="scscp1" name="procedure_call"/>

<OMA>

<OMS cd="scscp_transient_1" name="WS_RootsOfUpol"/>

<OMA>

<OMS cd="polyd1" name="DMP"/>

<OMS cd="polyd1" name="poly_ring_d_named"/>

<OMA>

<OMS cd="setname2" name="GFp"/>

<OMI>3</OMI>

</OMA>

<OMV name="x"/>

</OMA>

<OMA>

<OMS cd="polyd1" name="SDMP"/>

<OMA>

<OMS cd="polyd1" name="term"/>

<OMA>

<OMS cd="arith1" name="power"/>

10

Komendantsky, Konovalov, Linton

<OMA>

<OMS cd="finfield1" name="primitive_element"/>

<OMI>3</OMI>

</OMA>

<OMI>0</OMI>

</OMA>

<OMI>3</OMI>

</OMA>

<OMA>

<OMS cd="polyd1" name="term"/>

<OMA>

<OMS cd="arith1" name="times"/>

<OMA>

<OMS cd="finfield1" name="primitive_element"/>

<OMI>3</OMI>

</OMA>

<OMI>0</OMI>

</OMA>

<OMI>2</OMI>

</OMA>

<OMA>

<OMS cd="polyd1" name="term"/>

<OMA>

<OMS cd="arith1" name="times"/>

<OMA>

<OMS cd="finfield1" name="primitive_element"/>

<OMI>3</OMI>

</OMA>

<OMI>0</OMI>

</OMA>

<OMI>1</OMI>

</OMA>

<OMA>

<OMS cd="polyd1" name="term"/>

<OMA>

<OMS cd="arith1" name="power"/>

<OMA>

<OMS cd="finfield1" name="primitive_element"/>

<OMI>3</OMI>

</OMA>

<OMI>1</OMI>

</OMA>

11

Komendantsky, Konovalov, Linton

<OMI>0</OMI>

</OMA>

</OMA>

</OMA>

</OMA>

</OMATTR>

</OMOBJ>

Such objects always carry a call ID that has to be the same both in requests
and responses. The server provides the most of this ID in the handshake tag
at the start of the connection, the part known as service ID : the host, the port
and the process ID. The client then chooses a random string and appends it
to the service ID to form the call ID. This call ID it then checked for every
received OpenMath object.

8 Related work

Harrison and Théry experimented with data exchange between the theorem
prover HOL and the computer algebra system Maple [12,13], especially that
involving powerful although obfuscated rewriting techniques implemented in
Maple and not in HOL. These authors brought forwards the concept of a
degree of trust of a prover to a computer algebra program. This degree was
supposed to reflect the general attitude towards interpreting computational
values returned by the computer algebra system. Remarkably, already in
the case of HOL, the most appropriate degree of trust was the least one,
that is, “no trust at all”. This choice was motivated, first, by correctness
considerations and, second, by constraints implicit in the term structure of
the theorem prover. Since computational values had to be re-assembled as
HOL terms anyway, it was perfectly sensible to issue some correctness proof
goals and delegate them to the user of HOL. We follow a similar approach,
making the dependency of terms on values and proofs slightly more explicit.

More recently, S. Ould-Biha wrote in C a limited external tactic 2 coq_gap

using the library xml2 that executes the GAP interpreter in a quiet mode and
communicates via Unix pipes [17]. An example of a Coq script could be the
following:

Definition gap_fun : nat -> nat.

intro n.

let x := external "coq_gap" "Fun" n in exact x.

Defined.

The third line is an existential proof that gap_fun n is a natural num-

2 The authors of [13] might call such a tactic a bridge.

12

Komendantsky, Konovalov, Linton

ber. Therefore gap_fun n equals x that equals the string-to-natural conver-
ted value of the call to Fun(n); in the GAP interpreter. In fact, due to some
internal limitations such as the restriction to functions of type nat → nat,
it is difficult to see how this approach might be effectively generalised onto
functions of more general type.

The tactic external [20] is ubiquitous in Coq interfaces. It’s purpose is to
run an executable outside the Coq executable. The syntax is the following:

external "command" "request" arg_1 ... arg_n

An XML tree of the following form is sent to the standard input of the external
command:

<REQUEST req="request">

the XML tree of the first argument

...

the XML tree of the last argument

</REQUEST>

The external command must send on its standard output an XML tree of the
following form:

<TERM>

the XML tree of a term

</TERM>

or, if the response is a tactic call rather than a term,

<CALL uri="ltac_qualified_ident">

the XML tree of the first argument

...

the XML tree of the last argument

</CALL>

where ltac_qualified_ident is the name of a defined function in the Coq
tactic language, and each XML subtree is recursively a CALL or a TERM node.

Based on the external infrastructure, there is another Maple interface
for Coq due to H. Herbelin that updates an earlier version due to M. Mayero
and D. Delahaye [15]. This interface relies on external in a similar way to
S. Ould-Biha’s tactic.

The tactic external requires an intermediate XML representation of ex-
ternal data before they are interpreted in Coq. This is uniform but not neces-
sarily efficient in cases where intermediate data do not conform with the pCic
DTD and can be passed to Coq naturally by other means. It this respect,
everyday examples of communication with Coq such as native CoqIDE [20]
and ProofGeneral [3], an Emacs front-end for proof assistants, can provide
inspiration in a way communication data are represented there.

13

Komendantsky, Konovalov, Linton

9 Conclusions

We discussed a design pattern that can be employed to interpret OpenMath
data as objects in the SSReflect library of Coq. We are working on an imple-
mentation of this design pattern in a Coq tactic. At the moment the tactic
only performs non-recursive requests, that is, it sends a request and receives
the response once. It does not yet account for possible cases when the first
response is partial, for example, when more data are needed to successfully
finish the computation in GAP; however, since such scenarios are envisaged
in the SCSCP specification, it should be only a matter of time to implement
them in Coq.

References

[1] Asperti, A., L. Padovani, C. Sacerdoti Coen and I. Schena, HELM and the semantic Math-Web,
in: Proc. TPHOLS 2001, LNCS 2512 (2001).

[2] Asperti, A., W. Ricciotti, C. Sacerdoti Coen and E. Tassi, Hints in unification, in: Proc.
TPHOLs 2009, LNCS 5674, Munich, 2009, pp. 84–98.

[3] Aspinall, D., ProofGeneral, http://proofgeneral.inf.ed.ac.uk/.

[4] Barthe, G., Type-checking injective pure type systems, J. Functional Programming 9 (1999),
pp. 675–698.

[5] Breuer, T. and S. Linton, The GAP 4 type system: organising algebraic algorithms, in: ISSAC
’98: Proceedings of the 1998 international symposium on Symbolic and algebraic computation
(1998), pp. 38–45.

[6] Costantini, M., A. Konovalov and A. Solomon, “OpenMath – OpenMath functionality in GAP,
Version 10.1,” (2010), GAP package, http://www.cs.st-andrews.ac.uk/~alexk/openmath.
htm.

[7] Freundt, S., P. Horn, A. Konovalov, S. Lesseni, S. Linton and D. Roozemond, OpenMath in
SCIEnce: Evolving of symbolic computation interaction, in proceedings of OpenMath Workshop
2009 (to appear).

[8] Freundt, S., P. Horn, A. Konovalov, S. Linton and D. Roozemond, Symbolic Computation
Software Composability Protocol (SCSCP) specification, http://www.symbolic-computation.
org/scscp, Version 1.3, 2009.

[9] Freundt, S., P. Horn, A. Konovalov, S. Linton and D. Roozemond, Symbolic computation
software composability, in: AISC/MKM/Calculemus, Springer LNCS 5144, 2008, pp. 285–295.

[10] The GAP Group, “GAP – Groups, Algorithms, and Programming, Version 4.4.12,” (2008),
http://www.gap-system.org.

[11] Garillot, F., G. Gonthier, A. Mahboubi and L. Rideau, Packaging mathematical structures, in:
Theorem Proving in Higher Order Logics (2009), LNCS 5674, 2009.

[12] Harrison, J. and L. Théry, Reasoning about the reals: the marriage of HOL, in: A. Voronkov,
editor, Logic programming and automated reasoning: proceedings of the 4th international
conference, LPAR ’93, Lecture Notes in Computer Science 698 (1993).

[13] Harrison, J. and L. Théry, A skeptic’s approach to combining HOL and Maple, Journal of
Automated Reasoning 21 (1998), pp. 279–294.

[14] Konovalov, A. and S. Linton, “SCSCP – Symbolic Computation Software Composability
Protocol, Version 1.2,” (2010), GAP package, http://www.cs.st-andrews.ac.uk/~alexk/
scscp.htm.

14

http://proofgeneral.inf.ed.ac.uk/
http://www.cs.st-andrews.ac.uk/~alexk/openmath.htm
http://www.cs.st-andrews.ac.uk/~alexk/openmath.htm
http://www.symbolic-computation.org/scscp
http://www.symbolic-computation.org/scscp
http://www.gap-system.org
http://www.cs.st-andrews.ac.uk/~alexk/scscp.htm
http://www.cs.st-andrews.ac.uk/~alexk/scscp.htm

Komendantsky, Konovalov, Linton

[15] Mayero, M. and D. Delahaye, A Maple mode for Coq, http://coq.inria.fr/contribs/
MapleMode.html.

[16] OpenMath, http://www.openmath.org/.

[17] Ould-Biha, S., Finite groups representation theory with Coq, in: 8th International Conference
on Mathematical Knowledge Management (2009), 2009.

[18] Sacerdoti Coen, C. and E. Tassi, Working with mathematical structures in type theory, in: Proc.
TYPES 2007, LNCS 4941, Cividale del Friuli, Udine, Italy, 2007, pp. 157–172.

[19] Säıbi, A., Typing algorithm in type theory with inheritance, in: Proc. POPL’97, 1997, pp. 292–
301.

[20] The Coq development team, The Coq proof assistant reference manual, http://coq.inria.
fr/refman/.

15

http://coq.inria.fr/contribs/MapleMode.html
http://coq.inria.fr/contribs/MapleMode.html
http://www.openmath.org/
http://coq.inria.fr/refman/
http://coq.inria.fr/refman/

	Introduction
	Translation from OpenMath to Coq
	Working example: roots of a polynomial
	Type inference with subclasses
	Canonical structure hints
	User interface
	Tactic implementation
	Related work
	Conclusions
	References

