
UITP 2010

Asynchronous Proof Processing with

Isabelle/Scala and Isabelle/jEdit

Makarius Wenzel1,2

Laboratoire de Recherche en Informatique
Université Paris-Sud 11

Orsay, France

Abstract

After several decades, most proof assistants are still centered around TTY-bound interaction in a
tight read-eval-print loop. Even well-known Emacs modes for such provers follow this synchronous
model based on single commands with immediate response, meaning that the editor waits for the
prover after each command. There have been some attempts to re-implement prover interfaces in
big IDE frameworks, while keeping the old interaction model. Can we do better than that?
Already 10 years ago, the Isabelle/Isar proof language has emphasized the idea of proof document
(structured text) instead of proof script (sequence of commands), although the implementation
was still emulating TTY interaction in order to be able to work with the existing Proof General
interface. After some recent reworking of Isabelle internals, in order to support parallel processing
of theories and proofs, the original idea of structured document processing has surfaced again.
Isabelle versions from 2009 or later already provide some support for interactive proof documents
with asynchronous checking, which awaits to be connected to a suitable editor framework or full-
scale IDE. The remaining problem is how to do that systematically, without having to specify and
implement complex protocols for prover interaction.
This is the point where we introduce the new Isabelle/Scala layer, which is meant to expose certain
aspects of Isabelle/ML to the outside world. The Scala language (by Martin Odersky) is sufficiently
close to ML in order to model well-known prover concepts conveniently, but Scala also runs on the
JVM and can access existing Java libraries directly. By building more and more external system
wrapping for Isabelle in Scala, we eventually reach the point where we can integrate the prover
seamlessly into existing IDEs (say Netbeans).
To avoid getting side-tracked by IDE platform complexity, our current experiments are focused on
jEdit, which is a powerful editor framework written in Java that can be easily extended by plugin
modules. Our plugins are written again in Scala for our convenience, and to leverage the Scala
actor library for parallel and interactive programming. Thanks to the Isabelle/Scala layer, the
Isabelle/jEdit implementation is very small and simple. By enhancing GUI connectivity like that,
we essentially provide a theorem prover for user-interfaces.

Keywords: Isabelle, Scala, jEdit, asynchronous proof processing, re-use of editor and IDE
frameworks

1 Research partially supported by BMBF project “Verisoft” (01 IS C38)
2 makarius@sketis.net

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs



Wenzel

1 Introduction

From TTY loop to Proof General

Interactive provers in the tradition of Milner’s LCF are still notorious for
the lack of sophisticated user-interfaces. The original LCF system featured a
TTY-based read-eval-print toplevel for the ML programming language, and
later systems, such as Coq [15, §4] and Isabelle [15, §6] have reformed this
only mildly, e.g. by introducing their own command language beyond ML.

If we reconsider the well-known Proof General / Emacs interface [2], which
can be counted as a big success for a variety of provers, its interaction model
is closely tied to the TTY model. Prover commands are issued one after
another in a sequential (synchronous) manner, while each result is displayed
immediately in separate windows (typically one for goal output and one for
other responses). The main editor window is split into two parts: a locked
region of text that has been processed already, and an editable region of
unprocessed text. Thus Proof General provides a simple metaphor of stepwise
execution of a proof script. The user can move the frontier between the two
editor regions via assert and retract commands.

This model fits nicely onto the toplevel loop of many existing provers. The
main additional requirement is an undo facility for backward movement. Note
that the original HOL family [15, §1] lacks that, so Proof General support has
always been very limited here.

Interaction in the style of Proof General greatly enhances the TTY model,
but is still centered around the idea of one command after another. For exam-
ple, the SSREFLECT scripting language for Coq [15, §4.2] capitalizes on quick
typing of many small commands, with immediate feedback from the prover
via proof state output. Even with Proof General as the preferred interface,
this is TTY-style interaction par excellance.

Beyond Proof General?

Proof General has been able to dominate the interactive theorem commu-
nity for many years. Its basic interaction model has been imitated several
times, e.g. by CoqIde [15, §4.6], ProofWeb [10], or Matita [1]. There are
further clones of Proof General that are not widely used.

Does this mean the Proof General model and its typical implementations
are the final word on user-interfaces for theorem provers? We see two main
movements to challenge its predominance in recent years, although without
implementations that are ready for end-users so far. We observe the following
main weaknesses of Proof General.

(i) Weaknesses of the underlying editor framework.
Classic Proof General uses the relatively powerful Emacs environment,

although that has grown quite old recently. Some branches like XEmacs

2



Wenzel

are practically unmaintained. The GNU Emacs 23 branch has catched
up in the past few years, but it still appears somewhat archaic to current
user generations. There are also fundamental limitations of the Emacs
platform, such as the single-threaded execution model of its LISP engine.

Most Proof General derivatives use an even weaker editor: CoqIde im-
plements its own editor in OCaml using existing GTk widgets. This is
adequate for beginners, but many Coq power users switch to Proof Gen-
eral / Emacs at some point. Although OCaml/GTk is multi-threaded in
principle, CoqIde implementers have reported stability problems with the
integration of GUI components and user threads. Moreover, OCaml does
not support truely parallel execution of threads on multicore hardware,
limiting the application to a fraction of the CPU resources.

There have been various attempts to transplant the main ideas behind
Proof General to full-scale IDE environments, notably Proof General /
Eclipse (mostly for Isabelle) [4], Provereditor (for Eclipse and mostly
Coq) [5], and I3P [8] (for Netbeans and mostly Isabelle). The hope is to
replace relatively simple editor facilities by fully-featured IDE support,
although this poses extra challenges due to the sheer size of typical IDEs.

(ii) Weaknesses of the interaction model.
As explained above, we can understand Proof General interaction as

an add-on to plain TTY mode. In particular, there is only a single focus,
which is the point where the last command has been successfully executed
and the system awaits the user to enter the next one. This corresponds
to the prompt of the TTY loop, and marks an inherently sequential /
synchronous protocol.

Much less attention has been payed to this conceptual limitation so far,
which we would consider more important than questions about the un-
derlying editor platform. In the classic Proof General / Eclipse versions
[4] the sophisticated protocol definition of PGIP merely codifies classic
Proof General interaction. Beyond that, some more recent work [3] ex-
plores multi focus editing in PLATΩ, based on concurrent XML update
protocols on document sub-trees.

This situation is our starting point for the Isabelle/Scala and Isabelle/jEdit
project. We would like overcome the limitations of traditional Proof General,
both wrt. the underlying editor technology and the interaction model.

In §2 we outline an asynchronous interaction model that continuous our
previous work on parallel proof checking in batch mode. In §3 we introduce the
Isabelle/Scala layer as a mediating library between the ML and JVM world
that provides important abstractions from raw inter-process communication.
In §4 we report on our demo application Isabelle/jEdit that draws on the
results of §2 and §3. Related work is referenced as we go along, while covering
particular aspects.

3



Wenzel

2 Parallel proof checking and asynchronous interaction

Multi-threading for sophisticated GUI applications is important for two rea-
sons. First, it helps to structure an interactive application systematically,
e.g. to avoid blocking user input. Second, the advent of mainstream multi-
core hardware about 5 years ago has made parallelism inevitable for any CPU
intensive application.

The problem of efficient parallel proof checking in batch-mode has been
addressed already for Isabelle and the underlying Poly/ML platform, see [13]
and [11]. The following main virtues of our prover and the ML implementation
have allowed to retrofit parallel proof processing onto the existing system.

(i) DAG-structured development graph of the theories forming a project. This
enables simple concurrent loading in the style of parallel make tools, such
as GNU make -j. Little needs to be changed in the system to achieve
such parallelism at the outermost level, but the speedup factor is limited
by accidental theory dependencies, which are often relatively linear.

(ii) Fully-specified toplevel theorems and proof irrelevance for most practical
purposes. The original LCF family has been built around the idea of
an inference kernel that merely checks proofs without necessarily keeping
an explicit record of them. Even in type-theory based systems like Coq,
proofs are usually opaque and not taken into account in further proofs
that refer to the resulting theorems. Whenever resulting propositions
are specified in advance, we can easily fork the proof process, and join
everything in the very end of loading a whole sub-graph of theories. This
scheme allows to saturate ≈ 4 cores quite well.

(iii) Strictly modular proofs in the structured proof language of Isar. This is
a special bonus for well-structured Isar proof texts. The design of the
Isar proof language follows the principle that the main outline can be
checked quickly, while time consuming automated reasoning is limited to
justifications of terminal sub-proofs, e.g. “by simp” or “by blast”. The
latter can be forked / joined in a similar manner as above.

This extra potential of parallelism turns out practically important be-
yond 4–8 cores [11]. In large applications like JinjaThreads in AFP
http://afp.sf.net/entries/JinjaThreads.shtml, parallel checking
of sub-structures makes a big difference, with total runtime of 30 min
for toplevel parallelism vs. 8 min for parallelism also in sub-proofs.

(iv) Isabelle/ML programming style based on immutable values. Thanks to
mostly clean implementations of the main parts of Isabelle, with im-
mutable data structures almost everywhere, it has been relatively easy
to change the underlying execution model at a grand scale. Only small
portions of impure code had to be thrown out.

4

http://afp.sf.net/entries/JinjaThreads.shtml


Wenzel

To summarize, parallel batch processing of Isabelle theories and proofs is
relatively easy to achieve in principle, since it can be understood as a suitable
reorganization of the “evaluation process” of certain symbolic proof expres-
sions. The hard part is to build basic infrastructure for parallel ML from
scratch [13][11], and to get a reasonable speedup factor in the end (such as 3.0
for 4 cores, and 5.0 for 8 cores).

How does parallel proof processing affect the interaction model? We have
already explained why the TTY model is inherently sequential, working slowly
on one command after another and waiting for results from the prover until the
current command is finished, as indicated by the toplevel command prompt.

In order to exploit the rich theory and proof structure not just for parallel
batch processing, but also in interactive mode, we need to rethink the prover
toplevel itself. In Isabelle2009/2009-1, there is already a simple asynchronous
toplevel that supports an asynchronous document model natively as follows.

• Explicit operations begin document and end document delimit the scope for
any further operations below. Such a document is understood as a persis-
tent entity, with purely functional update operations. There are explicit
version identifiers. Operating on the initial root created via begin document
produces a tree of versions evolving over time. A final end document chooses
a single success path to be committed to the theory database.

• The define command operation identifies a piece of source text (“command
span” in Proof General terminology) for later use. Such a command es-
sentially represents a function on the semantic state of the prover (which
includes the theory and proof context, goal state etc.). Interaction with the
prover means to compose such functions in various ways, each resulting in
a partially evaluated proof attempt.

• The edit document operation updates a given document via insert and re-
move primitives of commands as defined above. This results in a new docu-
ment with a fresh identifier, and the prover will report internal state changes
eventually. The asynchronous toplevel maintains a multitude of such related
document versions, which typically share common sub-structures. Results
emerging from a new document version are reported as they arrive, accord-
ing to the parallel evaluation process managed by the prover. Messages are
explicitly identified by the corresponding command within a certain docu-
ment version (the TTY prompt is abolished).

The above primitives roughly sketch a protocol between the editor and the
prover that can give the user the impression of continuous checking of text,
providing prover feedback as it emerges incrementally. The editor never waits
for the prover, and never stops the user from typing. The prover is free to
schedule the evaluation of partial proof documents to exploit the potential of

5



Wenzel

parallelism as much as possible. Even without parallel checking, the prover
can to arrange document processing in a way that allows the user to edit
proofs independently from each other, without costly replay of whole scripts.

We expect great impact on the efficiency of interactive proof development
by this decoupling of the mechanics of proof document processing. Nonethe-
less, it is still quite hard to connect an editor to the prover at this raw interface,
so we introduce a more abstract programming API in the Isabelle/Scala layer.

3 The Isabelle/Scala library for prover interaction

In order to understand the key role of the Isabelle/Scala layer, we first re-
consider the basic problem of linking two rather dissimilar worlds: the prover
implemented in Standard ML (notably Poly/ML), using pure and higher-order
functional techniques pervasively, and the somewhat more “industrial” Java
runtime environment, with its mutable objects, null pointers, and awkward
verbosity of the Java source language.

Note that Coq and Matita are implemented in OCaml instead, and there
are basic GUI libraries for that platform that can be used as a starting point
for some editor functionality. From what people behind CoqIde and the Matita
GUI have reported privately or publicly [1], we conclude that OCaml/GTk is a
minority GUI platform nonetheless, and there are technical issues that demand
considerable development resources. Even if the basic GUI layer would work
perfectly, advanced editor or IDE frameworks are still lacking.

Our genuine task is to build provers, not to re-implement editors or IDEs
from scratch. So we prefer to link to existing frameworks, even though this
means to accommodate the split into two different processes: ML vs. JVM.
Explicit inter-process communication definitely raises some additional ques-
tions, and the inhomogeneous language situation complicates things further.

PGIP [4] addresses these issues by defining explicit protocols (using XML
notation) between various autonomous components. These components co-
incide with the separate programming language environments involved here:
the prover process in ML, the editor in Java, a broker in Haskell. 3

We argue that cutting the conceptual components at these process bound-
aries complicates the system integration, even without the (optional) broker in
between. The protocol suite defined here covers many accidental details that
the prover or editor happen to expose at their respective process boundaries.
Implementing and maintaining such complex protocols is very hard.

Our approach to bridge the gap between the prover and the editor is quite

3 Interestingly, the PGIP broker is motivated at some point as a means to enhance certain
prover functionality, without having to modify the prover itself, and without having to
struggle with sophisticated symbolic computations in Java.

6



Wenzel

different, see figure 1. Instead of complex protocols, we postulate a relatively
simple API on each side, to connect both worlds via a conceptual interactive
document model in between. Operating on the document works via statically-
typed library functions instead the raw protocol messages.

Editor: JVM Isabelle: SMLDocument
model

API API

Fig. 1. The mediating document model between editor and prover — conceptual view.

Figure 2 explains how this can be actually implemented. There is an inter-
nal protocol that is private to the library implementation; only considerable
abstracted concepts are exposed in the APIs on either side. The split of the
library implementation into two parts (ML vs. JVM) is addressed by main-
taining these dual-language modules side-by-side, within the main source tree
of Isabelle/Pure, and with identical names for the corresponding ML struc-
tures/functors vs. Scala objects/classes/traits. Thanks to Scala we can imitate
the Isabelle/ML programming style closely on the JVM side. 4

Editor: JVM Isabelle: SML

internalAPI API

S
ca

la

S
M

L

protocol

Fig. 2. Document model implementation via internal protocol and adapter library.

For example, to represent abstract XML trees, xml.ML defines a datatype
in 3 lines of code, and various supporting functions in a few pages. The
corresponding xml.scala uses 3 lines of Scala case classes [12], and various
basic methods (on immutable objects) of similar size than the ML version.
Naturally, there is a considerable overlap in functionality, but each side also
has its distinctive parts. For example, the Scala side provides a function
to turn pure XML trees into an official (mutable) org.w3c.dom.Document,
because some existing Java components will require this occasionally, say an
HTML rendering engine.

To transfer these ubiquitous XML trees between the two processes, the
the internal protocol uses the simple and efficient YXML encoding [14, §4.12].
Thus we scale-down the daunting task of fully official XML document exchange

4 Higher-order functional programming in Scala works very well, with a reasonable code
inflation factor of 1.5–2.0 compared to best-practice Isabelle/ML.

7



Wenzel

to a very simple transfer format of our own invention, which can be specified
on 1/2 page and implemented efficiently in 1/2 day.

Keeping the often delicate details of inter-process communication private
has further practical advantages. In particular, we can change the protocol
easily in order to adapt it to new requirements. In the brief history of the
Isabelle/Scala layer, the internal protocol was subject to several substantial
changes already, both concerning central ideas of the underlying asynchronous
document model, and marginal details for improved performance and robust-
ness. Such protocol refinements merely require a single party to agree with
itself, instead of a protocol committee negotiating over and over again.

Potential incompatibilities at the Isabelle/Scala API level can be adopted
in client code relatively easily, because the signatures are statically typed.

Beyond mere connectivity

There is more to Isabelle/Scala than simple and robust connectivity of the
ML and JVM worlds. When working on the Isabelle/jEdit demo application,
the immediate GUI programming requirements on the editor side turned out
marginal compared the general notion of persistent documents that can be
updated asynchronously. This means the conceptually deeper parts are inde-
pendent from the particular editor and can be addressed generically within
the Isabelle/Scala library. The basic idea is to model families of immutable
documents under version control, using ML-like Scala structures (tuples, lists,
options, functions). Concurrency and true parallelism is achieved via the ac-
tor library of Scala [9], which provides a very nice abstraction of independent
functional entities linked by explicit message channels. Following the principle
of side-by-side modules of ML vs. Scala again, we also provide some simple
add-ons to the actor library, to imitate the value-oriented parallelism around
futures and promises in Isabelle/ML.

These more advanced aspects of the asynchronous document model will
require further elaboration in future work. For example, the present history
only works for a single theory, and ignores the implicit theory graph that is
required for multi-buffer editing. Nonetheless, the present Isabelle/Scala layer
is sufficient to support our Isabelle/jEdit demo application, and allow some
evaluation of the general approach.

4 The Isabelle/jEdit demo application

Before we discuss the internal structure of Isabelle/jEdit we first illustrate
how it presents itself to the end-user, see figure 3. It is hard to capture the
dynamic process of asynchronous proof editing in static screenshots. The
general look-and-feel is similar to existing Java IDEs on Eclipse or Netbeans:

8



Wenzel

the user types text as he pleases, and the editor provides useful feedback
incrementally, by using semantic information from the partially processed text
in the background. This achieves continuous proof checking, based on our
asynchronous prover toplevel as sketched before. A lot of information can be
directly attached to the source text, via coloring, tooltips, popups etc. Thus
we partly address the challenge of single-buffer proof editing posed in [6].

Fig. 3. Main editor window of Isabelle/jEdit, with semantic highlighting

We also provide traditional prover output windows apart from the main
editor frame, e.g. see figure 4 for a proof state display that corresponds to the
last show command (in red).

Fig. 4. An instance of the Output dockable showing a proof state

Actually, the error reported in the result message of show is caused in a
different spot of the text, namely the non-sensical assume statement at the

9



Wenzel

caret position, which is not admissible in that proof context. The dynamic
change of colors already indicates such a structural error in the text: after
inserting that assume command, the corresponding show command turns
red. By highlighting such non-local errors directly in the text, we have already
transcended the Proof General model at a small scale. Further refinements
will be required achieve a viable editing model for Isar proofs in particular —
Isar had been locked into the TTY loop for more than 10 years already.

4.1 The jEdit editor framework

The jEdit editor http://www.jedit.org is advertised as “a mature program-
mer’s text editor with hundreds of person-years of development behind it”.
Compared to fully-featured IDEs, such as Eclipse or Netbeans, jEdit is much
smaller and better focused on its primary task of text editing. This main
jEdit functionality is provided by jedit.jar (4.5 MB size in jEdit 4.3.1), and
numerous plugins can be downloaded from a repository. As is typical for such
frameworks the quality of plugins varies greatly, ranging from major add-ons
written by core jEdit developers to adhoc experiments by interested users.

Plugins

A jEdit plugin consists of the main JVM object-code as a regular jar, to-
gether with some meta-data via JVM property files and some judicious use of
XML. Components are glued together via code snippets in BeanShell, which is
essentially a light-weight interpreted version of Java. There is even an interac-
tive BeanShell console (as a standard plugin) that exposes the name space of
JVM classes of the running editor environment. This is similar to the scratch
buffer in Emacs, with its direct access to the LISP runtime environment.

Getting started in implementing jEdit plugins is very easy by studying
documentation, example plugins, and the sources of the editor and some major
plugins. The jEdit console plugin greatly helps interactive exploration and
debugging. Alternatively, the whole application can be run under control of
existing JVM debugging tools, say the Java source-level debugger of Netbeans.

Integrated applications

Apart from using the official jEdit distribution together with some plu-
gins, it is also possible use jEdit as a basis for an integrated application
that is targeted for specific purposes. For example, MathPiper http://www.

mathpiper.org provides a “Mathematical IDE” by bundling jEdit with some
other mathematical applications, including the well-known GeoGebra system
http://www.geogebra.org for dynamic geometry, and some components for
computer algebra and chart drawing. In this scenario MathPiper starts a cus-

10

http://www.jedit.org
http://www.mathpiper.org
http://www.mathpiper.org
http://www.geogebra.org


Wenzel

tomized version of jEdit with some preloaded plugins run in sub-windows of
the “dockable window manager” of jEdit.

A similar derivative application is OQMathJEdit from the Active-
Math project http://www.activemath.org. The CZT suite http://czt.

sourceforge.net also include some jEdit plugins that can be used as the
basis for another small-scale IDE, here for the Z specification language.

Compared to large-scale IDE frameworks, such tool integration is very sim-
ple, as long as the components are available as regular jars. Historically, this
usually meant Java as implementation language, but recently some alterna-
tive JVM-based languages have attained sufficient attention to be counted
as “high-profile languages” by the JVM community. Apart from various
scripting languages such as Groovy, Jython, JRuby, two functional languages
have gained attention in the mainstream world: Clojure http://clojure.org
(roughly an untyped version of Haskell using LISP notation), and Scala [12]
with its sophisticated integration of higher-order functional object-oriented
programming and direct access to existing Java frameworks.

4.2 Isabelle/jEdit

The main Isabelle/jEdit plugin consists of ≈ 10 small Scala files (42 KB total
size) that augment some key jEdit components in order to provide a metaphor
of asynchronous proof document editing as outlined before.

Isabelle/jEdit integrates the jEdit 4.3.1 framework with our own Isabelle
plugin (written in Scala), and some further off-the-shelf jEdit plugins. The
main jEdit distribution is essentially unchanged, but the whole is presented to
the user as a “pre-canned” jEdit installation that can be started immediately
via the regular Isabelle tool wrapper. Apart from certain default properties,
the startup phase of the Java runtime and the core jEdit component is fine-
tuned to take care of important details such as Isabelle-specific text encoding
UTF-8-Isabelle, and a custom-made IsabelleText Unicode font that actu-
ally contains the usual Isabelle symbols that users expect from long years of
Proof General X-Symbol support.

Isabelle plugin components

The core functionality is directly attached to the key editor concepts of
jEdit as follows.

• Our Document Model augments a jEdit Buffer by semantic information pro-
vided by the asynchronous document model of Isabelle/Scala in the back-
ground. We maintain a partial function from Buffer to Document Model

— every buffer that is associated with an Isabelle theory file is “enhanced”

11

http://www.activemath.org
http://czt.sourceforge.net
http://czt.sourceforge.net
http://clojure.org


Wenzel

by adding an instance of Document Model. 5

Since the actual document model is maintained by the Isabelle/Scala
layer, the editor side needs to do very little here. The main responsibilities
of the Document Model are as follows.
· Maintaining a cursor into the persistent history of the Isabelle/Scala proof

document model. This affects both input and presentation of text: all
operations are relative to this explicitly identified point in history, which
is represented as a unique identifier.
· Input wiring involves a regular event handler for insert and remove actions

on plain text produced by jEdit. These events are locally buffered, and
eventually forwarded to the underlying document model together with the
history identifier. The Isabelle/Scala library turns text edits into larger
chunks based on the command structure of the proof language.

This multi-stage pipeline of edits decouples the editor from the prover:
there is no locking nor “object ownership” [7] involved here, which would
make the process more synchronous than necessary. The user can type
into the editor at any time, independently of the prover’s responses that
might arrive only much later, say within 20 ms . . . 200 ms.
· Presentation wiring involves a token marker associated with the buffer

that implements semantic syntax highlighting, meaning that authentic
information from the prover is used to indicate the formal status of certain
pieces of text. This avoids the typical frustration of editor-based syntax
tables that approximate syntax highlighting in a very crude way. Here we
use the information provided by the prover, the only instance that really
understands its own syntax. Thus we can highlight the term language
of Isabelle that is embedded as “inner syntax” in the theory source, or
Isar text with embedded ML which in turn refers to formal entities via
antiquotations, and all that interspersed with some nested comments.

• Our Document View augments a jEdit TextArea in a similar way as above.
It covers the immediate visual aspects of presenting a text buffer, allowing
multiple views on the same content.

The jEdit TextArea enables plugins to provide custom painters that get
direct access to Java graphics context to modify the visual appearance in
almost arbitrary ways. We use this facility to represent the command status
(unprocessed : pink, finished : faint blue, failed : red), both as background of
the source text (as in Proof General), and as small ticks in the right margin
of the text view (as in common IDEs).

There is additional wiring to follow the caret movements within the
TextArea: it influences other plugin components, notably prover output
windows.

5 Luckily, the jEdit developers do not insist on a purely static class hierarchy, but provide
a suitable backdoor that is reminiscent of plain-old object property lists.

12



Wenzel

We provide a few independent “dockable windows” that are integrated into
the window manager of jEdit. These are easily implemented as sub-classes of
Swing frames and declared to jEdit via some basic XML configuration. The
editor manages any number of instances of such dockables, either as freely
floating windows, or docked at a margin of the main editor view. Isabelle/jEdit
provides the following dockable classes.

• The Output dockable displays result messages (including proof state) of
the command where the caret is pointing, using the point of history of the
underlying Document Model.

Isabelle messages contain rich information represented as markup-trees.
This is rendered by mapping it to XHTML internally, and letting the Lobo
browser http://lobobrowser.org display it by means of a given CSS. Thus
we gain quite flexible output facilities almost for free. Proof General style
syntax highlighting of free vs. bound variables, type variables etc. can re-use
the existing CSS for Isabelle HTML presentation of theory sources. Further
semantic information provided by the prover, such as references to formal
entities (types, constants etc.), can be linked to internal Scala operations to
implement hyperrefs, although this is not fully activated yet.

• The Protocol dockable displays the raw stream of prover input and output
messages using XML-like notation. Note that the internal protocol uses the
more efficient transfer notation of YXML. Significant slowdown is caused
by printing all protocol messages explicitly within a Swing text component,
so this is really for debugging only.

Off-the-shelf plugins

The jEdit repository also provides quite useful “meta-plugins” that can be
easily instantiated for our purpose, say a generic tree view on the document
model underlying the theory text, or a text console that can be re-used as
Scala read-eval-print loop. Paradoxically, such basic functionality often needs
to be re-implemented from scratch in larger IDEs, due to their broader ap-
proach as a platform for “everything and nothing in particular” (Eclipse). The
Isabelle/jEdit application re-uses the following jEdit plugins.

• Console with our Scala sub-plugin to provide a regular read-eval-print loop.
This uses the existing class Interpreter provided by the Scala compiler
suite from EPF Lausanne. It is important to note that the interpreter
really runs within the same JVM environment as the application itself.

It might be arguable if end-users really need access to an application at the
programming language level, the Scala console already proved an inevitable
development tool that is culturally very close to the conventional toplevel
loops of OCaml or Poly/ML. Moreover, it provides immediate “scriptabil-
ity” of the application, although the integration with the rest of the frame-

13

http://lobobrowser.org


Wenzel

work is not as sophisticated as for BeanShell, which is the standard jEdit
scripting language.

• SideKick to provide a tree-view on the source buffer, but also for completion
popups and tooltips.

• Hyperlinks for simple clickable references in the source buffer.

Setting up such plugins for our purposes is usually quite simple. It requires
to read some example sources (in Java), and to implement our prover-specific
functionality typically in 0.5–2 pages of Scala. There are some further generic
jEdit plugins that can be used directly in our context without requiring any
additional configuration. For example, the Highlight plugin provides adhoc
syntax highlighting based on regular expressions given by the user.

5 Conclusion

Bridging the cultural gap between ML and Java

From our own encounter with the JVM world in the past 2 years, and from
discussions within people behind other prover interface efforts, we can say
that there is clearly a cultural gap between these different worlds. Interactive
provers are typically written in Standard ML, OCaml, or Haskell, using deep
programming techniques based on higher-order principles (recursive λ-calculus
with Hindley-Milner typing, monads, and recent trends even heading towards
dependently-typed programming languages). In contrast, industrial-strength
Java frameworks are more broad than deep, with huge IDEs and heavy-duty
tooling to (re)generated code by “refactoring” etc. Few people are attracted by
both ways of working, and even fewer are proficient in both at the same time.
The prover community has occasionally tried to import GUI technology into
their little world, typically using GTk in OCaml or Haskell. Nonetheless, we
would say that even the relatively big communities behind OCaml or Haskell
have not yet delivered access to mainstream GUI frameworks at a grand scale,
and sophisticated editor or IDE frameworks are missing altogether.

Our answer to this cultural problem: Keep ML as clean implementation
language for the prover, use Scala on the JVM for GUI/IDE connectivity.
Higher-order programming in Scala works very well, and we gain access to
interesting frameworks that happen to be implemented in a slightly odd lan-
guage (Java). Scala also has quite nice standard libraries to offer, including
actors as efficient model for parallel and interactive components [9].

Towards routine use of prover IDE technologies

Once the basic technical problems of connecting to contemporary IDEs are
overcome, we need to elaborate on the genuine requirements for proof editing
as opposed to established programming language IDEs. Fully-formal check-

14



Wenzel

ing down to the logical foundations has slightly different characteristics than
static analysis of Java, for example. Our asynchronous proof document model
addresses this by modeling unfinished proof attempts as first-class document
versions, and by allowing individual proof steps to produce results incremen-
tally, or even diverge. Further questions will arise when these ideas are scaled
up to the level of library maintenance, ideally in combination with external
version control, say via Mercurial with its efficient persistent history model.

Viable prover IDE support will be a prerequisite to enter these and
other areas of formal proof in practical use. The PIDE manifesto http:

//bitbucket.org/pide/pide/wiki/Home provides some further perspective.

References

[1] Asperti, A., C. Sacerdoti Coen, E. Tassi and S. Zacchiroli, User interaction with the Matita
proof assistant, Journal of Automated Reasoning 39 (2007).

[2] Aspinall, D., Proof General: A generic tool for proof development, in: S. Graf and
M. Schwartzbach, editors, European Joint Conferences on Theory and Practice of Software
(ETAPS), LNCS 1785 (2000).

[3] Aspinall, D., S. Autexier, C. Lüth and M. Wagner, Towards merging Plato and PGIP, in:
S. Autexier and C. Benzmüller, editors, User Interfaces for Theorem Provers (UITP 2008),
ENTCS 226 (2009).

[4] Aspinall, D., C. Lüth and D. Winterstein, A framework for interactive proof, in: M. Kauers,
M. Kerber, R. Miner and W. Windsteiger, editors, Towards Mechanized Mathematical
Assistants (CALCULEMUS and MKM 2007), LNAI 4573 (2007).

[5] Charles, J. and J. Kiniry, A lightweight theorem prover interface for Eclipse, in: S. Autexier
and C. Benzmüller, editors, User Interfaces for Theorem Provers (UITP 2008), ENTCS 226
(2009).

[6] Dixon, L. and J. D. Fleuriot, A proof-centric approach to mathematical assistants, Journal of
Applied Logic: Special Issue on Mathematics Assistance Systems 4 (2006).

[7] Gast, H., Managing proof documents for asynchronous processing, in: S. Autexier and
C. Benzmüller, editors, User Interfaces for Theorem Provers (UITP 2008), ENTCS 226 (2009).

[8] Gast, H., Towards a modular extensible Isabelle interface, in: S. Berghofer and M. Wenzel,
editors, Theorem Proving in Higher-Order Logics (TPHOLs) — Emerging Trends, TU
München, Institut für Informatik, 2009.

[9] Haller, P. and M. Odersky, Event-based programming without inversion of control, in: Joint
Modular Languages Conference, Springer LNCS, 2006.

[10] Kaliszyk, C., Web interfaces for proof assistants, in: S. Autexier and C. Benzmüller, editors,
User Interfaces for Theorem Provers (UITP 2006), ENTCS 174 (2007).

[11] Matthews, D. C. J. and M. Wenzel, Efficient parallel programming in Poly/ML and
Isabelle/ML, in: ACM SIGPLAN Workshop on Declarative Aspects of Multicore Programming
(DAMP 2010), co-located with POPL (2010).

[12] Odersky, M. et al., An overview of the Scala programming language, Technical Report
IC/2004/64, EPF Lausanne (2004).

[13] Wenzel, M., Parallel proof checking in Isabelle/Isar, in: G. Dos Reis and L. Théry, editors,
ACM SIGSAM 2009 International Workshop on Programming Languages for Mechanized
Mathematics Systems (PLMMS) (2009).

[14] Wenzel, M. and S. Berghofer, “The Isabelle System Manual (for Isabelle2009-1),” http://
isabelle.in.tum.de/doc/system.pdf.

[15] Wiedijk, F., editor, “The Seventeen Provers of the World,” LNAI 3600, Springer, 2006.

15

http://bitbucket.org/pide/pide/wiki/Home
http://bitbucket.org/pide/pide/wiki/Home
http://isabelle.in.tum.de/doc/system.pdf
http://isabelle.in.tum.de/doc/system.pdf

	Introduction
	Parallel proof checking and asynchronous interaction
	The Isabelle/Scala library for prover interaction
	The Isabelle/jEdit demo application
	The jEdit editor framework
	Isabelle/jEdit

	Conclusion
	References

