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Abstract

User-friendly interfaces can play an important role in bringing to a wider audience the benefits
of a machine-readable representation of formal arguments. The aartifact system is an easy-to-
use lightweight verifier for formal arguments that involve logical and algebraic manipulations of
common mathematical concepts. The system provides validation capabilities by utilizing a large
database of propositions governing common mathematical concepts. The aartifact system’s
multi-faceted interactive user interface combines several approaches to user-friendly interface de-
sign: (1) a familiar and natural syntax based on existing conventions in mathematical practice, (2)
a real-time keyword-based lookup mechanism for interactive, context-sensitive discovery of the syn-
tactic idioms and semantic concepts found in the system’s large database of propositions, and (3)
immediate validation feedback in the form of reformatted raw input. The system’s natural syntax
and large database of propositions allow it to meet a user’s expectations in the formal reasoning
scenarios for which it is intended. The real-time keyword-based lookup mechanism and validation
feedback allow the system to teach the user about its capabilities and limitations in an immediate,
interactive, and context-aware manner.
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1 Introduction

User-friendly interfaces can play an important role in bringing to a wider
audience the benefits of adopting a machine-readable representation of formal
arguments. There exist many such benefits both in mathematical instruction
and in research efforts involving mathematical rigor. These include reusability,
automatic evaluation of examples, and the opportunity to employ machine
verification. Machine verification can offer anything from detection of basic
errors, such as the presence of unbound variables or type mismatches, to
full confidence in an argument because it is consistently constructed using
the fundamental principles of a particular mathematical logic. There exist
a variety of such machine verification systems, and some of these have been
surveyed and compared along a variety of dimensions [30].

Until more recently, however, user interface design has not been a ma-
jor focus of the formal verification community. Earlier efforts make claims
that verification systems allow “human-readable” representations of formal
arguments [29,22,1]. However, conventions governing the concrete syntax for
representing even some basic and ubiquitous formal constructs (e.g. notation
for representing vector concatenation, or for representing graphs) are not con-
sistent. Furthermore, in order to be of practical use, verification systems must
incorporate very large libraries of definitions and propositions. Consequently,
even if a verification system has a simple core syntax, an expert user that
wishes to employ it must first become familiar with any libraries that might
be pertinent to the task at hand. In this way, the true syntax (consisting of
syntactic idioms corresponding to library content) of such systems can still be
obscure even to expert users. The issue of teaching users interactively about
system capabilities and limitations (including libraries of results users might
need to employ) has not yet been addressed sufficiently well.

The purpose of a user interface is two-fold. First, it must meet the user’s
expectations by providing an abstraction of the system that corresponds to the
user’s intuition and experience. Second, it must make clear what is expected
of the user in a way that is immediate, interactive, and context-aware. We
present our user interface design for the aartifact system, 4 a lightweight
verification system for formal arguments that involve manipulation of common
mathematical concepts. The interface has a multi-faceted design that works
towards meeting these two criteria for a user-friendly interface. It incorporates
three approaches: a familiar and natural syntax based on existing conventions
in the practice of formal reasoning, a keyword-based lookup mechanism for
discovery of supported syntactic idioms and semantic concepts, and feedback
in the form of reformatted raw input.

4 An interactive demonstration is available at http://www.aartifact.org.
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2 Motivation and Background

Introduce P,m.
Assume P is a finite set, P is non-empty, and P ⊂ ℕ.
Assume for all n ∈ ℕ, if n is prime then n ∈ P .

Assume m = P0 ⋅ . . . ⋅ P∣P ∣−1.
Assert m ∈ ℕ.

Assert for any p ∈ ℕ,
if p is a prime factor of m + 1 then

p is not a factor of m,

p is prime,
p ∈ P ,
p is a factor of m,
there is a contradiction.

Fig. 1. An example of a proof of the infinitude of primes authored using the aartifact system.

Even if one considers a small collection of mathematical concepts, a prac-
ticing mathematician might use a large number and a great variety of syntactic
idioms to refer to the predicates and operators that relate to them. To illus-
trate this, Figure 1 presents a very short proof of the infinitude or primes.
This proof contains explicit references to finite sets, natural numbers, prime
numbers, products, and factors. It also contains many implicit references to
the properties of these concepts, and to the relationships between them. In
order to accept as input arguments written in this manner, a user interface
must be both flexible and robust. In this section, we briefly review the rele-
vant approaches (some of which are based on those adopted in related work)
that can be useful in designing such an interface. Section 3 describes how each
of these was employed in the design of the user interface for the aartifact
system. For the purposes of discussion, we adopt the following terminology:
a user constructs an argument in some form (possibly with the help of the
user interface), and the interface then provides feedback to the user of the
argument’s validity (in the form of error messages, highlights, and so on).

2.1 Natural Syntax and Concrete Representation

Any system that aims to support the kind of formal reasoning activity users
employ in constructing a proof such as the one in Figure 1 must at least provide

3



Lapets and Kfoury

a natural syntax that corresponds to the conventions that prevail in the target
community of users. The designers of Scunak mathematical assistant [4] echo
this in positing a need for “naturality” in a system’s concrete representation.
The system must provide some familiar but simple syntactic constructs for
assembling logical arguments (i.e. conjunction, disjunction, quantification).
Furthermore, even if the system incorporates an extensive library containing
many concepts, properties, and relationships that a user may want to employ,
the system must allow the user to employ many of these without explicitly
referencing them (i.e. it must not require the user to name the results from a
library when the user wishes to employ them). The designers of the Scunak
system [4] refer to this as “[retrievability] ... by content rather than by name.”
Likewise, the designers of the Tutch system posit that an “explicit reference
[to an inference rule] to [humans] interrupts rather than supports the flow of
reasoning” [1].

2.2 Search and Automatic Keyword Lookup for Syntactic Idioms

Syntax is a means of communication, and a simple and natural formal syntax
is useful because it provides a means that can be learned quickly for encoding
formal arguments. However, this simple syntax must then be used to repre-
sent a large library of operators, predicates, and even syntactic idioms. It is
necessary to both store all these conventions in some sort of database, and to
expose them to a user without requiring that they spend time and effort read-
ing documentation or browsing a library. Thus, while an indexed database
of syntactic idioms (or, more generally, typed terms [17], or logical defini-
tions and theorems [6]) is a natural starting point, real-time keyword-based
lookup techniques for programming environments [7,14,15] suggest a means
for further improving the usability of a system. The system’s interface can
interactively inform the user about any relevant syntactic idioms and concepts
found in the library by interactively displaying references and examples based
on the text the user is typing in her argument.

2.3 Feedback about Logical Validity

Feedback provided to the user about an argument’s validity can include no-
tifications about syntax errors and unbound variables. It can also include
notifications about assertions that are unverifiable or false with respect to
some logic. There are three important characteristics of this feedback that
can contribute to the system’s usability and flexibility: the legibility and un-
derstandability of the feedback (e.g. precise indication of the location of er-
rors), the option to easily select the kind of feedback the user desires (e.g. the
validation technique [27] or logical system the user wishes to employ), and the
speed with which the feedback can be provided (which will often depend on
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the validation technique the user chooses).

3 Interface Design for a Lightweight Verifier

We describe in more detail the overall design and individual components of
the interface for the aartifact lightweight verification system. Figure 2
illustrates the user interface from the user’s perspective. The user submits a
formal argument represented using concrete syntax. As the user types, real-
time hints for syntax are provided at the top of the interface based on the
text surrounding the cursor. The user can select a logical system and click
“Verify” to produce feedback that replicates the input as HTML with color
highlights indicating valid and invalid portions of the argument (with blue
and red, respectively).

Fig. 2. Screen capture of the user interface.

Figure 3 illustrates the overall organization of the various components of
the system, and how they behave in practice. An expert-managed database
contains a large library of syntactic constructs and propositions. This database
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is compiled into a client-side JavaScript application for syntax lookup, and
a server-side executable that can perform formal verification. This ensures
that only the server must be trusted to perform verification correctly, while
the computational burden of providing syntax lookup is carried by the client
machine. The server sends the JavaScript application to the client when the
web interface illustrated in Figure 2 first loads. Users then author arguments
on their own browser with the help of the JavaScript application, and have the
option at any time of submitting their arguments with the click of a button
to the server for validation.

Fig. 3. Overview of system components and operation.

3.1 Concrete Syntax for Arguments

The concrete syntax for arguments (listed in part in Figure 4) consists of
English phrases, LATEX markup, and MediaWiki markup. We denote by x a
sequence of comma-separated variable identifiers. An argument consists of a
sequence of statements. There are only three kinds of statements, and two of
them (Assume and Assert) are very similar from the user’s perspective. Each
statement either introduces global variables, introduces an assumption, or
represents an assertion about something that the user believes to be true. The
syntax for logical expressions corresponds to typical English representations
of logical operators within a higher-order logic. The two base cases for logical
expressions are a mathematical expression in LATEX syntax, and an English
phrase predicate.

English phrases acting as predicates can have zero or more arguments.
An English phrase predicate is represented within the abstract syntax (not
presented in this paper but found in relevant reports [10]) using a list of words
(string literals without punctuation or spaces) and placeholders (which we
denote [ ]). If the English phrase contains any mathematical arguments, the
English phrase predicate is applied to a tuple of expressions representing the
arguments. For example, the predicate found in the expression ∖p{$p$ is

a path in $G$} is represented using the list

{[ ], is, a, path, in, [ ]},
6
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statements S ::= Assume E ∣ Assert E ∣ Intro x

logical expressions E ::= $ e $

∣ ∖l{w1 w2 . . . wn}
∣ E1 iff E2

∣ E1 implies E2

∣ E1 and E2

∣ E1 or E2

∣ it is not the case that E

∣ for all $ x $, e

∣ exists $ x $, e

word or math expression w ::= English word ∣ $ e $

mathematical expressions e ::= 1 ∣ 2 ∣ . . .

∣ x

∣ e1 e2

∣ (e)

∣ ∖emptyset
∣ {e}
∣ e1, . . . , en

∣ e1 + e2
...

Fig. 4. Concrete syntax overview.

and the entire expression is represented as

{[ ], is, a, path, in, [ ]} (p,G).

Mathematical expressions are represented using many typical LATEX syntactic
constructs. A large collection of constants and operators (which is consistent
with the basic commands found in existing LATEX packages where possible) is
supported.

It is the task of the parser to process the concrete syntax of the portion
of an argument that is to be considered for verification. The parser for the
concrete syntax was constructed in Haskell using the Parsec parser combina-
tor library [13], which is expressive enough for constructing infinite lookahead
parsers for general context-sensitive grammars. This library is simple to use
and allows for a succinct parser implementation. The aartifact parser per-
forms without noticeable delay on all inputs on which it has been tested (the
infinite lookahead capability is utilized at only a few points in the parser defi-
nition, such as to allow expert users to define their own infix operators). The

7



Lapets and Kfoury

overall approach to handling syntactic idioms using a context-sensitive parser
is similar to the approach employed in the design of the parser for the Fortress
programming language [23].

3.2 Library Access

The aartifact library of supported propositions and definitions contains a
large collection of hundreds of entries. Each proposition deals with semantic
concepts, properties they may have, and relationships that may hold between
them. The following proposition represents a very simple example:

“for any x, y, z,
x ∈ ℝ, y ∈ ℝ, z ∈ ℝ, x < y, y < z

implies that
x < z”.

Many of these propositions simply state an equivalence between two forms
of notation or syntax. They can be viewed as establishing a normal form
for representing certain concepts or properties thereof. For example, the
following proposition converts the typical notation for a set of integers in
a finite range, “{x, . . . , y}”, into a predicate that is then used in other
propositions about the properties of sets of integers in a finite range:

“for any x, y,
x ∈ ℤ, y ∈ ℤ, x ≤ y

implies that
{x, . . . , y} is the set of integers ranging from x to y”.

It is unreasonable to expect a user to learn all the possible syntactic con-
structs and idioms for common concepts. Thus, a real-time keyword lookup
system is integrated into the user interface. Whenever a user is typing an ar-
gument, the text immediately surrounding the user’s cursor is broken up into
keywords, and these are then used to look up and present suggestions and
examples of relevant syntactic constructs. Figure 2 illustrates such a scenario.
The user’s cursor is positioned over text that includes the words “relatively
prime”. At the top of the interface, a suggestion appears that provides exam-
ples of relevant predicates, and a link to view propositions within the library
that include this predicate.

In this way, the system is able to inform the user of what is expected in
a context-sensitive manner, and in doing so to establish a mode of communi-
cation with a user who may already know about the concepts she wishes to
employ, but may not yet be familiar with the system’s syntax or library. This
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is essential when the user wishes to employ concepts and notations that are
not necessarily consistent within the community. For example, the supported
forms of notation for closed real number intervals might be {x ∣ 0 ≤ x ≤ 10}
and [0, 10], the notation for the set difference operator might be ∖ or −, and
the notation for concatenation of vectors might be ⋅ or ∘. Informing the user
of these conventions within a context in which they are thinking about them
saves time and provides an opportunity to learn the system’s syntax within a
relevant context. Even if the user is not familiar with any syntactic conven-
tion, she may temporarily type keywords related to the concept in question
directly into the argument in order to receive information about supported
notations for that concept.

This feature is implemented as a Javascript application that is compiled
from the contents of the library. The JavaScript application is delivered to
the user’s browser whenever the web interface page is loaded, and the user’s
browser executes it. This approach makes it possible to provide instant feed-
back without burdening the server, which must process validation requests
and generate feedback.

3.3 Validation Feedback

The aartifact web interface provides a means for selecting one of a (currently
very small) collection of validation techniques. As illustrated in Figure 2, when
validation is requested the raw ASCII text of an argument is processed and
converted into HTML feedback in which colors are used to indicate both errors
(e.g. unbound variables, unverifiable subexpressions in assertions) and verifi-
able assertions. This is accomplished by maintaining a data structure within
the parser that couples the abstract syntax with the original concrete syntax.
It is worth noting that while only the aartifact verification executable is
currently utilized, any other verification tool with a command-line interface
that can accept ASCII input and can produce text or HTML output could be
invoked using this interface.

4 Notes on Usability Evaluation

We have utilized [12] the aartifact system in defining and reasoning about a
compositional formalism for a typed domain-specific language [3]. The ability
to implicitly invoke propositions dealing with the algebra of sets was essential
in making this process manageable and in allowing the resulting proofs to be
legible. This exercise also led to the discovery of a few minor errors and to the
simplification of a few definitions in the compositional formalism. The system
has also been deployed for several formal reasoning assignments within two
undergraduate courses: an advanced undergraduate course on functional pro-
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gramming [11] and an introductory undergraduate course in linear algebra.
These experiences demonstrated the usability benefits of meeting student ex-
pectations with the help of a natural syntax and an underlying library from
which results can be invoked implicitly. Precise error messages and the abil-
ity to select the validation technique are especially important in classroom
instruction, because students are new to a system and it is necessary to pro-
vide for them a validation procedure that incorporates only a small library of
results pertaining to the topic at hand.

5 Related and Future Work

The aartifact syntax reflects the design principles of other formal verifica-
tion systems such as Tutch [1] and Scunak [4]. The need for natural interfaces
in machine verification in general has been recognized by the designers of the
Tutch proof checker [1], the Scunak mathematical assistant system [4], the
ForTheL language and SAD proof assistant [27], the EPGY Theorem-Proving
Environment [16], the ΩMEGA proof verifier [25], and in the work of Sieg
and Cittadini [24]. To better serve users in engineering, mathematics, and the
applied sciences, the Fortress programming language [2] incorporates com-
mon mathematical symbols and syntactic constructs into its syntax, and the
designers are putting effort into assembling a flexible parser that simplifies
user-directed expansion of the language syntax [23]. More widely, there ex-
ist other efforts to create interfaces and systems for practical formalization
of mathematics. The MathLang project [8] is an extensive, long-term effort
that aims to make natural language an input method for mathematical argu-
ments and proofs. The aartifact system’s concrete syntax and parser can
be improved further by adding support for additional syntactic constructs and
idioms, and by providing more information within the HTML feedback (e.g.
about the justification for verifiable assertions, and the counterexamples for
false assertions). It may also be worthwhile to introduce input and output
support for standards such as MathML [5].

There exists a variety of other tools for formal representation and machine
verification of proofs, and many of these have been surveyed and compared
along a variety of dimensions [30]. Some of these tools provide a way to con-
struct proofs by induction, such as Coq [19], PVS [18], and Isabelle [20,21].
More specifically, formal representation and verification systems include Is-
abelle/Isar [28] and Mizar [26]. Our work shares some of the motivations
underlying the design of both of these. In particular, Isabelle/Isar is designed
to be relatively independent of any particular underlying logic, and both sys-
tems are designed with human readability in mind. There has been some work
in keyword-based lookup involving Mizar [6], but it did not involve providing
the user with real-time syntactic and semantic hints.
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Somewhat relevant work in providing search capabilities for a library of
expressions has been done within the context of Haskell. Search facilities have
been developed that allow users to retrieve and browse expressions within a
context by their type [9], and there exists an online search tool called Hoogle
for exploring the Haskell libraries [17]. There has also been work on retrieval of
library functions, and even automated construction of programming language
code snippets, using collections of keywords [7,14,15]. This work suggests that
our own future efforts can be directed into better integrating the real-time
lookup functionality with validation capabilities. For example, the real-time
lookup hints can actually provide suggestions for valid expressions that consist
of variables that are within the scope of an assertion in an argument. More
generally, it may be possible to represent some simple validation techniques
(e.g. unbound variable detection) in their entirety as JavaScript applications.
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