UITP 2010

Visualising Reasoning: What ATP can learn
from CP

John Slaney'?

Australian National University
and National ICT Australia

Abstract

Tools for graphical representation of problems in automated deduction or of proof searches are rare
and mostly primitive. By contrast, there is a more substantial history of work in the constraint
programming community on information visualisation techniques for helping programmers and
end users to understand problems, searches and solutions. Here we consider the extent to which
concepts and tools from a constraint programming platform can be adapted for use with automatic
theorem provers.

Keywords: automated reasoning, visualisation

1 Introduction

There is a growing appreciation in the automated theorem proving commu-
nity of the importance of the interface between automated reasoning technol-
ogy and its users. In the present paper, we wish to contribute some ideas
concerning one aspect of this interface: the visualisation of proof problems
and proof searches. We draw on our experience in developing the user inter-
face and visualisation toolkit of the constraint programming platform G12 [8].
The application of information visualisation techniques is more advanced in
the constraint programming (CP) and operations research (OR) communities
than in that of automated deduction, mainly because of a long history of use
of the systems by third party programmers to provide customised solutions

L NICTA is funded by the Australian Government as represented by the Department of Broadband, Com-
munications and the Digital Economy and the Australian Research Council through the ICT Centre of
Excellence program.

2 Email: mailto: john.slaney@anu.edu.au
This paper is electronically published in

Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs

mailto:john.slaney@anu.edu.au

SLANEY

for end users [4]. We limit ourselves to visualisation of logical problems and of
search by “bottom-up” theorem provers based on resolution or superposition,
for instance. In this paper we do not consider graphical presentation of proofs.
This is not to deny the importance of proof presentation, but it is not the area
in which CP visualisation ideas are most directly applicable.

1.1 Constraints and logic

Constraint satisfaction problems (CSPs) are classically presented in terms of
a finite set of decision wvariables vq,...,v, with associated domains or sets
of possible values Dq,...,D,, and a set of constraints or relations between
the variables. That is, a constraint on a tuple of variables (v;,,...,v;) is
a subset of D;, x ... x D; . An assignment is a function assigning to each
decision variable v; a value from D;. Assignment A satisfies a constraint C
on (v;,...,v;) iff (A(v;),..., A(vs,)) € C. A is a solution to the CSP iff
it satisfies all of the constraints. Frequently, what is sought is not merely an
arbitrary solution but an optimal one, defined as one minimising the value of
some particular decision variable caled the objective.

In terms of first order logic, domains of the decision variables are domains
in the ordinary model-theoretic sense. If the domains are not all the same,
then the logic is best construed as many-sorted. Decision “variables” are not
variables in the true sense, as they cannot be bound by quantfiers for instance,
but are individual constants or zero-ary function symbols. An assignment is
an interpretation of the language, just as in the model theory of first order
logic, and a constraint is a relation which might well be expressed as a formula
which is true or false on the interpretation in the expected way.

G12, like other constraint programming systems, provides a modelling lan-
guage. This language, Zinc [5], is used to state problems declaratively and
independently of the algorithms used to solve them. Zinc is expressly de-
signed as a notation for the first order logic of (mainly) finite domains, with
additional apparatus for dealing with numbers. It has a type structure, with
basic types int, float, bool and user-defined enumerated types. To these
are applied the type constructors ‘array of” and ‘set of’ as well as formation
of subrange types and record types (type tuples). Quantifiers forall and
exists can range over any finite set, and the boolean connectives are avail-
able. Despite the potentially intricate types, many CSPs are expressed using
little more than base types and arrays of them. On the construal of Zinc as
logic, arrays are simply functions from their index set to their value set, so
array names and indices are function symbols and arguments. Details of the
syntax of Zinc are not germane to the present document: it suffices that it is
a way of writing logical theories and that several visualisation tools have been
developed for it.

SLANEY

1.2 Ezxzample 1: Meet-pass planning

set of int: Sectors = 1..6;
set of int: Trains = 1..3;
set of int: Steps = 1..13;

array[Sectors,Sectors] of bool: linked;
array[Trains] of Sectors: start;
array[Trains] of Sectors: finish;

array[Steps,Trains] of var Sectors: pos ::

is_output;

constraint forall(tl, t2 in Trains, x in Steps)

(pos[x,tl] == pos[x,t2] -> t1
constraint forall(t in Trains)

(pos[1,t]

t2);

start[t] /\ pos[nsteps,t] == finish[t]);

constraint forall(t in Trains, x in Steps where x > 1)

(linked[pos([x,t],pos[x-1,t]1]);
constraint forall(t,u in Trains where t

(forall(x in Steps where x > 1) (pos[x-
start =[1, 2, 4];
finish = [5, 2, 4];
linked = [| true, true, false, false,
| true, true, true, false,
| false, true, true, true,
| false, false, true, true,
| false, false, false, true,
| false, false, true, false,

solve satisfy;

I= u)

1,u]l != pos[x,t]));
false, false

false, false

false, true

true, false

true, false

false, true |];

Fig. 1. Meet-pass planning problem in MiniZinc

To illustrate how CSPs are formulated and visualised, we consider a prob-
lem in meet-pass planning. Industrial meet-pass solvers, of course, routinely

solve much larger instances than this, but it serves the present purpose.

Description

Five sectors of railway track are connected linarly from S1 to S5. There
are trains in sectors S1, S2 and S4. There is a siding accessible from sector S3
big enough to hold one train. At each timestep, each train may stay where it
is or move into an empty adjacent sector. No two trains may be in a sector
at the same time. Find a plan of 13 timesteps which moves the train in S1 to

S5, returning the other two trains to their starting positions in S2 and S4.

3

SLANEY

2 Views

Before considering the potential of visualisation for aiding understanding of
first order theorem proving, we outline some of the ways in which it is routinely
applied in constraint programming. Our examples come from the visualisation
toolkit of the G12 constraint programming platform, since it is our own work,
so we know it best.

2.1 Constraint graphs

The constraint graph of a CSP is the undirected graph whose vertices are the
decision variables of the problem and whose edges connect variables which
co-occur in at least one constraint. Inessential variants may weight the edges
according to the strength of the constraints, or according to the number of con-
straints relating the variable pair, or may have additional vertices for problem
parameters or data values. Also sometimes useful are the inverse constraint
graph, in which the vertices are constraints and the edges represent sharing of
variables, and the bipartite constraint graph which has vertices of both types
(decision variables and constraints) and arcs for the ‘occurs in’ relation. The
static view of the constraint graph shows the “shape” of the problem. It is
especially good for revealing clustering of variables, critical variables through
which a lot of information must flow during propagation or during variable
choice, certain kinds of symmetry or repeated structure, and disconnected or
loosely connected fragments of the problem. Hence the constraint graph is a
picture of structure.

Note that the constraint graph represents only the existence of constraints,
not their content. This level of abstraction can reveal which parts of a prob-
lem are closely related and which are remote. It shows the pathways along
which information can be passed by propagators associated with constraints,
but does not show what information may be passed or in which direction. Im-
portantly, it is completely independent of whether the problem is satisfiable
or not.

During search, the constraint graph may be viewed in dynamic mode,
showing at each step which variables have values assigned and which domains
have been reduced and which have not. This animated picture can show the
search concentrating on a particular part of the problem before leaping to
another, or making scattered decisions all over it. For the constraint pro-
grammer, this helps to form a mental image of the search in progress which
is part of understanding the effect of variable choice heuristics, channeling
constraints and much else.

A constraint graph viewer needs a visual metaphor, a layout definition
with associated layout algorithm, access to the problem syntax before and
during search, and a rich set of controls. The standard visual model is the

4

SLANEY

Fig. 2. Meet-pass planning problem constraint graph. The long shape is typical of planning
problems. The array ‘pos’ is in red, the auxiliary variables in green.

Fig. 3. Detail from the graph in Figure 2

“balls and sticks” metaphor. Vertices are shown as circles or spheres, and
edges as straight lines, sometimes with meaningful thickness. Some viewers
allow curved lines and some allow rectangles or other shapes for the vertices,
usually in order to allow text to be displayed inside them. The G12 constraint
graph viewer, G12-CGV, uses simple circles and straight lines. Its layout is
force-directed [6]: edges exert on the vertices they join an attraction directly
proportional to their length, like springs with a rest length of zero. At the
same time, all vertices repel each other with a force obeying an inverse-square
law, as though they were similarly charged particles. This type of layout is
good for revealing clustering and symmetry, but can result in cluttered graphs
in some cases in comparison with layouts which, for instance, aim for regular
spacing of vertices or try to minimise edge crossings. The layouts generated by
G12-CGYV are 2-dimensional, in order to reduce overlap and masking in static
pictures on a screen or page. 3-dimensional pictures are sometimes useful (and
undeniably pretty) but are less easy to work with in general.

5

SLANEY

2.2 Search trees

Constraint satisfaction problems may be approached by many search methods
each with a great range of variants. The fundamental division is between local
search methods such as hill-climbing, tabu search, random walks, simulated
annealing or the like, and systematic search methods based on some notion
of traversing a tree. Tree-based searches standardly proceed in a roughly
similar way: at each node of the search tree, a decision variable is chosen
and its domain split. The effects of this decision are propagated through the
constraints, meaning that some inference rules are woken and run to a fixed
point. This may remove values from the domains of other variables, possibly
triggering assignments where domains are reduced to singletons and possibly
causing the search to backtrack if a domain is emptied or “wiped out”. The
resulting subtrees are explored recursively.

Visualisation toolsets for constraint programming [2,1,3] invariably feature
representations of search trees. G12 is no exception, providing a simple search
tree viewer G12-STV. Trees may be viewed statically after the event or dynam-
ically growing during the search. Viewing the entire tree gives an impression
of the nature of the search: are the branches getting longer or shorter as the
search progresses? Are there repeated subtrees of the same shape, indicating
repeated work? Where in the search does a particular decision fit? Zooming
in on a specific node or a small set of nodes allows individual decisions to be
examined in detail. Drawing a tree is rather easy, and mechanisms for popping
up information on request are readily available in graphics libraries.

Some modifications of the basic binary tree are easy to incorporate in the
view: multi-way branching, for instance, poses no problem. More significant
departures from the simple paradigm, however, pose challenges for visualisa-
tion. SAT solvers, for instance, frequently perform sophisticated backjump-
ing, relying on learned clauses to ensure progress through a virtual tree which
changes constantly; the problem of representing this process in a usable search
tree viewer is largely open. Visualising more radically different methods such
as local search, is another game: there is no obvious analogue of the search tree
view presenting such a combination of global search shape and local reasoning
detail.

2.8 Clustom views

Having solved a CSP, it is usually necessary to present the solution to a user
in some readily understandable way, and for this purpose graphical represen-
tations are commonplace. There is no practical limit to the range of pictures
that might be employed. A few, like Gantt charts, histograms, network dia-
grams or dots on maps are common enough to count as standard, but much
more eleborate possibilities exist. The solution to a problem in product con-

6

SLANEY

El Console | [2(Problems |] Tasks | G; CGV View |® Visualisation 2 =8

AAQ 300ms QOO0 s

Tlresources

Fig. 4. Meet-pass problem: screenshot of a “custom” animation of the solution

figuration, for example, might be presented as a 3-dimensional picture of a
car, a computer or a kitchen. Or a schedule might be represented as an ani-
mated diagram showing the workflow when the schedule is executed. The G12
toolkit includes a “custom viewer” G12-VisView, which allows the program-
mer to draw arbitrary pictures and to script them to depend in completely
arbitrary ways on data from a file or from the solver output.

Custom views can be used during the search as well as at the end. At any
stage of a backtracking search, some decision variables will have definite values,
meaning that there is a partial model of the problem—generally, this cannot
be extended to a complete model, since it will be amended on backtrack when
the errors in it come to light. It may well be that the user-oriented picture
can be partially drawn given this partial model. The variables which do not
have definite values have domains of possible ones, meaning that the partial
model can also be seen as standing for the set of possible states obtainable by
assigning values from the domains to the remaining variables without regard
to the constraints. This set of possibilities might be drawable in some way.
G12-VisView can be linked to the G12 platform’s search debugger so that
(partial) custom views can be displayed at selected breakpoints as the search
progresses. This is an important aspect of search visualation, as it shows what
the reasoner is “trying to do” in humanly understandable terms.

3 Theorem proving

Theorem proving differs from constraint solving in a number of respects. Most
obviously, it adresses the dual problem. Theorem proving is showing that
something is necessarily the case, while constraint solving shows what is pos-
sibly the case. To derive a conclusion from assumptions, we typically add
its negation to those assumptions and go through some sysyematic process
of checking that the whole is unsatisfiable. To solve a set of constraints, on
the other hand, we search for a demonstration of satisfiability. Other dif-
ferences are only slightly less obvious: constraint solvers often search for an

7

SLANEY

optimal solution, where the concept of optimality has no correlate in the case
of deduction;?® constraint satisfaction concentrates heavily on finite domains,
while theorem proving nearly always allows for infinite ones; provers are usu-
ally designed for a “thin” language of a single-sorted logic with no elaborate
types, while languages like Zinc are rather rich; constraint solvers natively
support numerical reasoning, while theorem provers mostly do not.

Nonetheless, some notions carry over without too much strain. The the-
orem proving analogue of the set of decision variables is the set of primitive
function symbols of the language in which the problem is expressed. Predicate
(relation) symbols count as function symbols for this purpose: they correspond
to functions with value type bool. Function symbols of arity greater than zero
are analogous to arrays, generally of unknown and possibly infinite length.

The domains of decision variables are of course the domain or domains of
quantification in the intended interpretation of the proof problem. If it has no
intended interpretation, then the Herbrand universe will suffice, though since
this is usually infinite, some homomorphic images of it are likely to be more
useful. The domain of any boolean-valued functions (predicates) is obvious.

The axioms or assumptions of the theory in which a proof is sought, in-
cluding the negated goal, all go over naturally into constraints. If the theorem
is provable, of course, there will in fact be no solution in the CSP sense, but
this does not prevent the first order formulae, or their ground instances, from
being construed as constraints on assignments.

3.1 ATP constraint graphs

Fig. 5. ’Constraint graph of “Who Killed Aunt Agatha” with a domain of size 3

Some problems from TPTP, especially of the “essentially propositional”
sort, give rise to constraint graphs which can be drawn just as in the CSP case.

3 Proof length is not analogous to optimality of models, but rather to something like the
depth, or perhaps the width, of the search tree.

8

SLANEY

[0 of 33 variables assigned (0 %) - 0... Vertices: 38 - Edges: 138

Fig. 6. Abstracted version of the constraint graph, showing the four arrays (functions) as single
large nodes, except for the unclustered green one representing the three suspects

Consider TPTP-PUZ001, “Who Killed Aunt Agatha”, for instance (Figure 5).
For the purposes of defining constraints, the domain over which the problem is
interpreted has been reduced to just three objects, but no assumption is made
as to which of them is which person, or indeed whether the three people are
all distinct. A greater degree of abstraction is obtained by clustering together
all the vertices which represent elements of the same array (Figure 6). The
cluster of non-array elements, which in this case just contains the three people,
has been expanded to show the individuals. Since the arrays are shrunk to
dots, this view also abstracts from the size of the domain.

Other problems, however, look less like CSPs. In many cases, there are
few, if any, individual constants, and no natural domain size as the Herbrand
universe is infinite. Even in such cases, however, constraint graphs can be
drawn, by interpreting the language over finite domains. Although the graphs
are not always informative, as they are sometimes so dense as to be little
more than large cliques, there are cases in which they reveal structure which
domain-specific proof searches may be able to exploit.

A related idea, little explored to date, is to use essentialy the same drawing
tool to draw the unification (or resolution) graph of a first-order problem. In
this graph, the vertices are clauses and the edges represent potential resolution
inferences where a literal in one clause is unifiable with a complementary
literal in the other. Again, in many cases this shows nothing: the graph is
often very dense, consisting of little more than a big clique. Other problems
have structure but it is uninteresting: the condensed detachment problems
in the LCL section of TPTP, for instance, consist only of a single nucleus to
which every other clause is related, so the unification graph is just a star.
Some problems, however, show more interesting structure on this view, and
its dynamic version may give a good animated view of the search as clauses

9

SLANEY

G: CGV View 2 Atk P ST

|0 of 24 variables assigned (0 %) - 0 of 106 const... Vertices: 24 - Edges: 10%

Fig. 7. Unification graph of SET013-1, with the negated conjecture ringed

are added and deleted. Figure 7 shows SET013-1, for example, pictured at the
start of the search. The trio of clauses unrelated to anything else state that
‘equal_elements’ is an equivalence relation—a fact which is irrelevant to the
proof, as they cannot resolve against anything else. The large “ball” of clauses
is mostly a clique, with one more clause closely related to it, but there is other
structure present as well. Since the negated conjecture is far from the clique
the unification graph suggests that a strategy which causes the search to focus
on the “non-clique” clauses could be very successful with this problem.

3.2 ATP search trees

The situation with regard to search trees is less happy. While a bottom-up
theorem prover* does perform a search, this is not much like the tree-based
search of a finite domain CSP solver. There are no backtracks, as the search
is cumulative: the “state”, considered as the set of formulae known to follow
from the assumptions, increases monotonically—at least, if it is considered
that the presence of a formula in it brings the implicit presence of all its
substitution instances. The graph of the derivation, with the nodes labelled
by formulae and the edges corresponding to inferences, is not a tree but at
best a DAG. Moreover, this DAG can easily grow to have thousands of initial
(“root”) nodes and be extremely bushy and unstructured. If a proof is finally
found, of course, only the sub-DAG ancestral to the goal (the goal is often the
empty clause) needs to be reported, as this is the proof itself. The rest of the
formulae derived from the assumptions are mere clutter at best.

4 Top-down provers such as those aimed at analytic tableaux and the like are much more
appropriate for the search tree viewer, but are not the focus of the present paper.

10

SLANEY

The question of how best to display the graph of derived formulae is still
open. Since there are so many of them, some abstraction is needed in order to
make any sort of comprehensible picture. One suggestion is to display only the
number of formulae at each successive proof depth, perhaps with a little more
information like the distribution of their weights, and then to allow zooming
on particular formulae, showing their proofs on demand. How this might work
in detail is, however, not clear. The question of what information the user or
programmer is to get from this view and what it might be for would seem to
be in order. For the moment, we leave it as a challenge.

3.8 ATP runtime monitoring

What is better established, and much easier to implement, is monitoring the
progress of prooof search by maintaining counts of objects and events and
displaying them in familiar forms such as histograms and scatterplots. The
running totals of clauses generated, clauses kept, clauses used for inference,
unifiers calculated, clauses subsumed and suchlike are all measures of progress
and of work performed. Combined with measures such as time taken (say, in
milliseconds) and memory used, they give a reasonably understandable view of
the behaviour of the prover. Interesting properties of formulae, which can be
plotted at the point where each formula becomes active or something of that
sort, include syntactic measures like length, depth of nesting of operators and
number of occurrences of some “interesting” symbol. Measures of a formula’s
effect on the proof search include its fecundity, or the number of children it has
normalised by the number of potential partners with which it could combine.

Figure 8 shows examples of two ways of viewing fecundity: as a histogram
or as a scatterplot. Both are, of course, very familiar styles of data presenta-
tion. The three problems shown in the figure, from group theory, nonclassi-
cal logic and set theory respectively, exhibit very different fecundity profiles.
Moreover, as the scatter plots show, there are changes on this measure as the
search progresses. Even in the case of GRP040, where the distribution is ap-
proximately normal, the search is not uniform but goes through phases. We
do not know what these observations may mean for designing more efficient
inference rules or search heuristics, but we do se them as part of learning our
way about, and surely the more we look the more we shall see.

In the constraint programming case, it is common to provide some func-
tionality for viewing search progress in the form of bar graphs and the like.
Figure 9 shows how this might look when applied to first order theorem prov-
ing. The prover SOS [7] was given a problem of modest difficulty, requiring
about 700 iterations of the given clause loop. At each iteration, it dumps a
vector of integers to a file. These record quantities such as the runtime in
milliseconds, the number of clauses generated, the number back-subsumed,

11

SLANEY

4
GRP024-5

.04 ¢

0.0 3
2 s;...‘

0.02 -1

o L MmHH T o L. :
0 1 2 3 4 0 500 1000 1500 2000
Fecundity (in 1% bands) Given clause

2

0.06 | LCLO040-1

M W g B S e gt

0.04 ¢ :
1o,
e i o
0.02 | : ":":' .'::T“".?N —::s“r.)‘ : N ‘-,.. o ,3.
‘s’ 8 Mo WP e o T
0 0 : : : :
0 0.5 1 1.5 2 0 2000 4000
Fecundity (in 1% bands) Given clause
0.04 1F
SET013-1a -
0.03 | (log scale)
0.1
0.02
0.01
0.01
0.001 0.01 0.1 1 0 500 1000 1500
Fecundity (in 1% bands) Given clause

Fig. 8. Fecundity plots for three problems. Left column shows histograms of the proportion of given
clauses in each percentile of fecundity. Right column shows scatterplots of the same examples: the
fecundity of each given clause is represented as a dot. The colours record the density of the plot,
ranging from red (dense) through yellow and green to blue (sparse).

the number remaining in the set of support, etc. A simple script computes
functions of these numbers and causes them to be displayed in small windows
of the type familiar from “load minitor” tools. It is easy to change the mode
of each display: for instance, a number can be drawn as a spike on a bar graph
or as a “needle” on a dial, or as the colour of something. Viewing several of
these plots in parallel in a dashboard display can give useful clues as to how

12

SLANEY

X/ Untitled

A
gﬁ‘.f"“‘

fleration 279

Fig. 9. Dashboard showing sliding window graphs of various quantities obtained from a runtime
data dump during a proof search

things change, around points in the search where there are shifts in behaviour.

3.4 ATP custom views

Finally, there remains the visualisation option of creating a picture specific
to a problem, or to a small group of problems, and animating it with data
from the proof or from the proof search. This is intuitively less natural for
deduction than for constraint programming, because whereas in the CP case
the solution sought is a model of the clauses, describing a scenario that might
easily be drawn, in the case of theorem proving the solution is a proof which
shows that no model is possible.

Imagination need not be rendered inapplicable by that difficulty, however:
depending on the problem, there may be ways. Figure 10 shows Aunt Agatha’s
tragedy again, as unfolded by Prover9.° This time the story is rendered graph-
ically in terms of four figures representing Agatha, the butler, Charles and the
shadowy killer who turns out to be Agatha in the dénoument. The arrows
show the ground unit clauses which have been deduced by a given step of
the proof search: a simple arrow where the relation is known to hold in one
direction (e.g. butler hates killer), arrow with an extra “head” in the mid-
dle where it holds in one direction but definitely not in the other direction
(e.g. butler hates Agatha but not conversely), double arrow where it holds in
both directions, and pale crossed-out arrows for known failure. Figures are
enclosed in rectangles where it is known whether they bear the relation to
themselves (e.g. Agatha hates herself but did not kill herself). The snapshot
shows the state just at the point where it has been deduced that Agatha is

5 http://www.cs.unm.edu/~mccune/prover9/

13

SLANEY

==
/
=

hates ! is

killed

Fig. 10. An idea for what a custom view of ‘Who Killed Aunt Agatha’ might look like, with some
conventions for showing the ground unit clauses deduced. The picture is updated every time there
is new information to add to it.

the killer (green double arrow). It does give some information—for example,
that nothing is known about Charles except that he is self-identical. The facts
deduced to this point leave open the possibility that Charles is in fact Agatha
in disguise, that Charles killed the butler, and so forth. As the sequence of
images is displayed, it shows the order in which the details of the scenario are
assembled, though it abstracts from any information as to which are used to
deduce which others.

The Aunt Agatha story is, of course, something of an easy case for treat-
ment in ways adapted from constraint programming, since it is a finite domain
problem which is almost a CSP—indeed, it takes little work to re-express it in
Zinc and have a constraint solver deal with it. The visual presentation is just
a suggestion, whose utility is not really clear: nothing deep, of course, turns
on the convention for using different arrows to draw a partially known graph,
and there is no implied claim that the same technique will be appropriate for
many other problems. It will be interesting, however, to try more examples
from other theorem proving domains. We could perhaps look at some software
verification problems and think about how some abstraction from the search

14

SLANEY

state could be drawn by decorating a flow chart or other such diagram.

4 Conclusion

For such purposes as performance debugging of problem encodings and par-
tameter settings, it is essential to understand both the static semantics of
logical formulae and the process of search. Traditionally in bottom-up the-
orem proving, the presentation of relevant information has been either too
coarse (statistics on numbers of clauses generated and the like) or too fine
(staring at runtime clause dumps). Visualisation tools offer the possibility of
attaining better levels of abstraction. Moreover, pictures often make intuitive
sense and allow important features to stand out.

In this paper, we have considered using or adapting visualilsation tools
from the constraint programming community. We find that some, like con-
straint graphs and dashboard displays of event counts, go over quite naturally
to theorem proving, while others such as search trees do not. We urge re-
searchers in automated deduction to continue adapting visualisation tools of
the kind considered here and to develop new ones. Visualisation is the most
promising route to a better understanding of the automatic theorem proving
process.

References

[1] Choco constraint solving toolkit. http://www.emn.fr/z-info/choco-solver/.

[2] Krzysztof Apt and Mark Wallace. Constraint logic programming using ECLiPSe. Cambridge
University Press, Cambridge, 2007.

[3] Pierre Deransart, Manuel V. Hermenegildo, and Jan Maluszynski, editors. Analysis and
Visualization Tools for Constraint Programming, Constrain Debugging (DiSCiPl project),
volume 1870 of Lecture Notes in Computer Science. Springer, 2000.

[4] Christopher V. Jones. Visualization and Optimization. Kluwer, Boston, 1996.

[5] Nicholas Nethercote, Peter J. Stuckey, Ralph Becket, Sebastian Brand, Gregory J. Duck, and
Guido Tack. MiniZinc: Towards a standard CP modelling language. In Proceedings of the 13th
International Conference on Principles and Practice of Constraint Programming, pages 529-543,
2007.

[6] Aaron Quigley and Peter Eades. Fade: Graph drawing, clustering, and visual abstraction. In
Proceedings of the 8th International Symposium on Graph Drawing, pages 197-210, 2001.

[7] John Slaney, Arnold Binas, and David Price. Guiding a theorem prover with soft constraints.
In Proceedings of the 16th Eurecopean Conference on Artificial Intelligence, pages 221-225, 2004.

[8] Mark Wallace. G12—towards the separation of problem modelling and problem solving. In
Proc. 6th International Conference on Integration of Al and OR Techniques in Constraint
Programming for Combinatorial Optimization Problems (CPAIOR), volume 5547 of LNCS,
pages 8-10. Springer, 2009.

6 The author wishes to acknowledge the G12 IDE development team—Andreas Bauer,
Viorica Botea, Matt Gray, Daniel Harabor and Andre Maroneze—for their work on the
tools used in this research.

15

	Introduction
	Constraints and logic
	Example 1: Meet-pass planning

	Views
	Constraint graphs
	Search trees
	Custom views

	Theorem proving
	ATP constraint graphs
	ATP search trees
	ATP runtime monitoring
	ATP custom views

	Conclusion
	References

