
UITP 2010

Pollack-inconsistency

Freek Wiedijk1

Institute for Computing and Information Sciences
Radboud University Nijmegen

Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands

Abstract

For interactive theorem provers a very desirable property is consistency : it should not be possible
to prove false theorems. However, this is not enough: it also should not be possible to think that
a theorem has been proved that actually is false. More precisely: the user should be able to know
what it is that the interactive theorem prover is proving.
To make these issues concrete we introduce the notion of Pollack-consistency. This property is
related to a system being able to correctly parse formulas that it printed itself. In current systems
it happens regularly that this fails.
We argue that a good interactive theorem prover should be Pollack-consistent. We show with
examples that many interactive theorem provers currently are not Pollack-consistent. Finally we
describe a simple approach for making a system Pollack-consistent, which only consists of a small
modification to the printing code of the system.

‘The most intelligent creature in the universe is a rock.
None would know it because they have lousy I/O.’

— quote from the Internet

1 Introduction

1.1 Problem

An interactive theorem prover (also called proof assistant or proof checker) is
a computer program that allows a human and a computer to collaborate on
the development of mathematical proofs. These formal proofs are sufficiently
detailed that – once they are finished – the computer can establish their full

1 Thanks to Randy Pollack, Mark Adams and Christian Urban for the inspiration for this
note. Thanks to James McKinna and Josef Urban for valuable comments. Thanks to
Makarius Wenzel for the Isabelle examples from Section 5.

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Wiedijk

correctness without any human help. The proofs created in an interactive
theorem prover can come both from computer science and from mathematics.
The technology of interactive theorem proving gives an almost 100% chance
of getting all the details of a proof right. It is much better in this respect
than any other method of proof development. Furthermore, although the
technology is still in its infancy, already impressive formal theories have been
constructed [5,6,11,13,14].

Interactive theorem provers are complicated programs. They are similar in
complexity to optimizing compilers. For this reason a serious worry could be
that software errors – bugs – might cause errors in proofs to remain undetected.
This would be similar to a program behaving incorrectly because of bugs in
the compiler that compiled it. Which of course happens occasionally.

However, the situation with interactive theorem provers is different. Many
of them are built according to the de Bruijn criterion. Examples are HOL4, HOL

Light, ProofPower, Isabelle, Coq, NuPRL, Agda and Twelf. This criterion also
might be called the micro-kernel architecture for interactive theorem provers.
In these systems only a very small part of the program is responsible for the
correctness of the mathematics. That part can be a small separate checker
(like the Ivy system for Otter and Prover9 [15]), but generally it is part of
the system as a ‘checking kernel’. This second option was first implemented
in the seventies in Robin Milner’s LCF system and therefore is also called the
LCF architecture. Here the kernel exports a few abstract datatypes – for terms,
types, formulas, proofs and so on – and because all mathematics is done using
these datatypes, correctness can be guaranteed because only the kernel can
manipulate this data.

These LCF kernels are sufficiently small that they can be inspected manu-
ally to get a very high confidence in their correctness. For example, the HOL

Light kernel only has about 400 non-blank lines of code. For some of these
systems the code of the kernel even has been formally proved correct [1,2,9].

However, as Randy Pollack argues in his seminal paper about these issues,
How to Believe a Machine-Checked Proof [20], the property of consistency –
that the system will not ‘prove’ false theorems – is not enough. A serious
problem is that a user might think a theorem has been formally proved, while
in fact he or she is misled about what it is that the system has actually done.
For this reason not only the proof checking kernel has to be taken into account
when considering the reliability of a system, but also the interface code for
communicating with the user.

Now the issue of the user not understanding what the interactive theorem
prover is doing is not a formal property of the system. Who knows what
a user might be thinking? However part of it is formal. That concerns the
behavior of the code that parses a user’s input and prints messages back. This
code may behave in a manner that is ‘incorrect’ in a way that can be formally

2

Wiedijk

6

�

interactive theorem prover

interface

proof
checking
kernel

parser

printer

remainder of the system:
theorem database, basic reasoning,

rewriting, back-chaining,
proof search, decision procedures,

etc.

6

?

� ��

- -

editor

Fig. 1. The part of an interactive theorem prover related to Pollack-consistency

defined. These definitions are the subject of this paper.

These issues are closely related to a system not being able to parse what it
printed itself. Often, a message from a system will contain a term or formula,
that the user would like to copy/paste into the proof development. Generally
this works, but regularly it does not. The system then gives error messages
about its own output or sometimes, worse, will silently interpret it in a wrong
way. This also is about the parsing and printing part of the system. A system
that exhibits this behavior also might be called incorrect.

1.2 Approach

In Fig. 1 we present a diagram of a typical interactive theorem prover with
the LCF architecture. The system consists of two parts: the prover itself,
and the interface that it uses to communicate with the user. These parts
overlap: part of the interface code is inside the system, but other parts are
separate. For instance, the Proof General interface typically is separate from
the prover. The editor that is used to edit the formal proof text for the system
also generally is outside the prover.

In Fig. 1 we focus on two specific components of the interface: the parser

3

Wiedijk

and the printer of terms and formulas. Although the figure suggests that
these are unique, in practice often there are multiple versions. For instance, a
system might be able to print a term either in ASCII format as well as in a rich,
mathematical, style. Also, there often are parsers for other types of input as
well. For instance, most systems have a parser for their scripting language.
The parser in Fig. 1 should be understood as only the parser for terms and
formulas, the other parsers are not indicated in the diagram. As terms and
formulas are typically datatypes from the proof checking kernel of the system,
we connected the parser and printer in the diagram to the kernel, although of
course they often also will be called from the remainder of the system.

Now the property of consistency of a system is only concerned with the top
left box in the figure, the proof checking kernel. In this paper we will introduce
a notion called Pollack-consistency (named after [20]), which concerns all three
boxes in the shaded area of the diagram. We claim that a system only can be
called correct, if all of this (and not only the kernel) has been proved correct.

To define Pollack-consistency, we need to talk about the functions in the
system for parsing and printing terms (in the names of these functions the t
subscript indicates that they are for terms):

parset : string → term

printt : term → string

The first generally is a partial function (not all strings represent a term), while
the second generally is total. Often there will be different variants of the printt
function, possibly selected by setting parameters of the system. In the rest of
the paper we only consider the default version of this function, the one that is
used when running the system with all parameters having their default value.

Definition 1.1 The functions parset and printt are called compatible if the
output of printt always is in the domain of parset, i.e., that for all terms t we
have that parset(printt(t)) is defined.

Definition 1.2 The functions parset and printt are called well-behaved if parset

is a left inverse of printt, i.e., if

∀t. parset(printt(t)) = t

Note that parset generally is not a right inverse of printt, i.e.

¬∀s. printt(parset(s)) = s

For example we generally have that

parset("x+y") = parset("x + y") = parset("(x + y)")

4

Wiedijk

despite the fact that

"x+y" 6= "x + y" 6= "(x + y)"

Often in interactive theorem provers formulas are a special kind of terms, but
this is not always the case. Therefore we also consider the parsing and printing
functions for formulas, the statements of the logic:

parsef : string → formula

printf : formula → string

The notions of well-behavedness and compatibility also make sense for these
functions.

Definition 1.3 Let P be a proof assistant. A Pollack-axiom of P is a formula
of the form

t1 = t2

where
printt(t1) = printt(t2)

Furthermore, if the system distinguishes between terms and formulas, it also
can be a formula of the form

φ1 ⇔ φ2

where
printf(φ1) = printf(φ2)

The print functions in this definition should be the default print functions of the
system. No printing of extra type annotations, hidden arguments, coercions,
etc. should be turned on that normally is turned off.

Note that the terms t1 and t2 and the formulas φ1 and φ2 are allowed to
contain free variables.

The = should be the default equality of the system. For instance, for Coq
it should be the Leibniz equality of the system.

Finally the equation t1 = t2 or the equivalence φ1 ⇔ φ2 should be a correct,
well-typed formula of the system. For instance, if in the case of HOL or Coq
the types of t1 and t2 differ, then t1 = t2 will not be a Pollack-axiom of the
system, even if printt(t1) = printt(t2).

We now define four variants of the notion of Pollack-inconsistency. We de-
fine Pollack-inconsistency and Pollack-super -inconsistency, with both notions
having a strong and a weak form.

Definition 1.4 A proof assistant P is called Pollack-inconsistent if from a
finite number of Pollack-axioms of P it is possible to derive a contradiction in
P .

5

Wiedijk

A proof assistant is called weakly Pollack-inconsistent if the terms/formulas
in the Pollack-axioms use extra definitions on top of the basic library. These
definitions should be conservative: they should just introduce new notions or
notations, and not affect what can be proved about already existing notions.

A proof assistant is called strongly Pollack-inconsistent if the terms/formu-
las in the Pollack-axioms that give the contradiction already can be written
with just the basic library of P loaded, i.e., without extra definitions on top
of the basic library.

Definition 1.5 A proof assistant P is called Pollack-super-inconsistent if
there exists a formula φ that is provable in P for which

printf(φ) = printf(⊥)

Here ⊥ is the default formula for falsity in the system. For instance in Coq it
is the constant False of type Prop.

A proof assistant is called weakly Pollack-super-inconsistent if the formula
φ is allowed to use extra definitions on top of the basic library.

A proof assistant is called strongly Pollack-super-inconsistent if the formula
φ already can be written with just the basic library of P loaded, i.e., without
extra definitions on top of the basic library.

1.3 Related Work

Obviously Randy Pollack’s work is closely related to this paper. Some systems
try hard to behave well with respect to the issues addressed in this paper. For
example in Mark Adams’s HOL Zero system the printing function has been
especially designed to behave reasonably. (However, we do not know how the
examples from Section 3 behave in this system.)

1.4 Contribution

This paper might seem a bit shallow. We define a few obvious notions, and
give a few obvious examples of the printer of some interactive theorem provers
behaving strangely.

However, we think that it is important that these issues are – as it were –
on the table in front of the theorem proving community. It is shocking that it
is this easy to establish various forms of Pollack-inconsistency in many proof
assistants. And even if the developers of these systems consider this not to
matter, then still we would like to engender awareness of this.

Our paper contributes three things:

• We introduce various notions of Pollack-consistency.

• We show by examples that many serious systems are not Pollack-consistent.

6

Wiedijk

• We present a simple strategy for making a system Pollack-consistent. This
strategy is designed to make it doable to formally prove a system to be
Pollack-consistent.

1.5 Outline

This paper has the following structure. In Section 2 we give some obvious
properties of Pollack-consistency. In Sections 3–7 we investigate the Pollack-
consistency of several important interactive theorem provers. Finally in Sec-
tion 8 we discuss, and also present a generic approach for making a system
Pollack-consistent.

2 Some properties of Pollack-consistency

We now list a few properties of the notions from the previous section. Most
proofs are obvious and omitted.

Lemma 2.1 A system that is strongly Pollack-inconsistent also is weakly Pol-
lack-inconsistent.

Lemma 2.2 A system that is strongly Pollack-super-inconsistent also is weak-
ly Pollack-super-inconsistent.

Lemma 2.3 A system that is strongly Pollack-super-inconsistent also is
strongly Pollack-inconsistent.

Lemma 2.4 A system that is weakly Pollack-super-inconsistent also is weakly
Pollack-inconsistent.

These four lemmas just say that the four notions of Pollack-consistency form
the obvious diamond.

Lemma 2.5 A system that is inconsistent already is strongly Pollack-super-
inconsistent.

Hence Pollack-consistency (any of its four forms) is a stronger property than
consistency.

Lemma 2.6 Parsing and printing functions that are well-behaved (as defined
in Definition 1.2) also are compatible (as defined in Definition 1.1).

Lemma 2.7 A consistent system in which the parsing and printing functions
are well-behaved is already not weakly Pollack-inconsistent.

This means that in that case all four forms of Pollack-consistency hold.

Proof. If the parsing and printing functions are well-behaved, obviously the
Pollack-axioms are provable by reflexivity of equality/equivalence. In that

7

Wiedijk

case the possibility to derive a contradiction is not dependent on the presence
of Pollack-axioms. 2

3 HOL Light is strongly Pollack-inconsistent

The first system that we look at is John Harrison’s HOL Light system [7,8,10].
In this system we can have the following session:

‘?!x:1. T‘;;

val it : term = ‘?!x. T‘

‘?!x:bool. T‘;;

val it : term = ‘?!x. T‘

The first term is a formula that states that there exists exactly one object in
the unit type 1. The ?! notation is ASCII for ∃! and denotes unique existence,
while the constant T is the formula ⊤ for truth. This first formula obviously
is provable. The second term states that there exists exactly one object in the
Booleans {⊤,⊥}. This obviously is false. But both formulas print the same.
This means that they give a Pollack-axiom that implies falsity. As for this
example no definitions are needed beyond the basic library of the system, we
have here an example of strong Pollack-inconsistency.

The parsing and printing functions of HOL Light are not well-behaved in
the sense of Definition 1.2. In HOL Light printt is called string_of_term and
parset is called parse_term, and we have:

let t = ‘?!x:1. T‘;;

val t : term = ‘?!x. T‘

let t’ = parse_term (string_of_term t);;

Warning: inventing type variables

val t’ : term = ‘?!x. T‘

t’ = t;;

val it : bool = false

dest_binder "?!" t’;;

val it : term * term = (‘x‘, ‘T‘)

type_of (fst it);;

val it : hol_type = ‘:?73843‘

The type of the variable x after the string is parsed back is a fresh ‘invented’
type variable ?73843. We have here an example of a term t for which

parset(printt(t)) 6= t

One can do stranger things in HOL Light. For instance one can create a formula
that prints in a way that parses as a completely different formula:

mk_eq(mk_var("0",‘:1‘),mk_var("1",‘:1‘));;

8

Wiedijk

val it : term = ‘0 = 1‘

prove(it, ONCE_REWRITE_TAC[one] THEN REFL_TAC);;

val it : thm = |- 0 = 1

We here have two variables, both of the type unit type 1, which have names
0 and 1. The pretty-printer of the system does not realize that something
strange is going on with these variable names. But when parsing these names,
they of course will be read as the numbers 0 and 1. Again, we have strong
Pollack-inconsistency here. By playing with variable names like this, one can
make this example even more extreme:

mk_eq(mk_var("!x y z n. n > 2 /\\ x EXP n + y EXP n",‘:1‘),

mk_var("z EXP n ==> x = 0 /\\ y = 0",‘:1‘));;

val it : term =

‘!x y z n. n > 2 /\ x EXP n + y EXP n = z EXP n ==> x = 0 /\ y = 0‘

prove(it, ONCE_REWRITE_TAC[one] THEN REFL_TAC);;

val it : thm =

|- !x y z n. n > 2 /\ x EXP n + y EXP n = z EXP n ==> x = 0 /\ y = 0

We did not manage to establish a form of Pollack-super -inconsistency for HOL

Light. The formula for falsity – F – seems too simple to play tricks that leads
to a provable formula that prints as this single letter. However, one can have
terms that print like it and even have the right type, but are not falsity:

‘F‘;;

val it : term = ‘F‘

type_of it;;

val it : hol_type = ‘:bool‘

mk_var("F",‘:bool‘);;

val it : term = ‘F‘

type_of it;;

val it : hol_type = ‘:bool‘

4 Coq is weakly Pollack-super-inconsistent

We did not manage to establish strong Pollack-inconsistency of the Coq system
[3,4]. However, the weak forms are easy, by playing with coercions. A coercion
is a function that is supposed to be an embedding or projection. It does not
need to be written by the user and is inferred by the system. This just affects
parsing and printing, and does not logically change anything. However, one
can abuse this mechanism. For instance consider:

Coq < Coercion S : nat >-> nat.

S is now a coercion

Coq < Check 0.

9

Wiedijk

0

: nat

Coq < Check 1.

0

: nat

Here the successor function is declared a coercion, and will not be printed.
Clearly the equation 0 = 1 is a Pollack-axiom, which obviously makes Coq
Pollack-inconsistent.

To get Pollack-super -inconsistency for Coq, one can apply the same trick
with negation:

Definition _Prop := Prop.

Definition _not : _Prop -> Prop := not.

Coercion _not : _Prop >-> Sortclass.

These definitions make the following Coq session possible:

Coq < Lemma _I : _not False.

1 subgoal

============================

False

_I < exact (fun x => x).

Proof completed.

_I < Qed.

exact (fun x => x).

_I is defined

Coq < Check _I.

_I

: False

Clearly the formula for which _I is a proof prints like falsity, and Coq is weakly
Pollack-super-inconsistent.

5 Isabelle is strongly Pollack-inconsistent and weakly

Pollack-super-inconsistent

Tricks like those for HOL Light and Coq also can be used in Isabelle [12,19]:

> lemma "EX! x::unit. True"

proof (prove): step 0

goal (1 subgoal):

10

Wiedijk

1. EX! x. True

> by auto

lemma EX! x. True

> notation True ("False")

> lemma False

proof (prove): step 0

goal (1 subgoal):

1. False

> ..

lemma False

The lines prefixed by > are the input processed by Isabelle, while the lines
without that prefix are the output from the system. In the first example it
is shown that Isabelle omits types in quantifiers in exactly the same way as
HOL Light does. In the second example Isabelle proves a statement that reads
False by changing the notation for True in the system.

This shows that Isabelle is Pollack-inconsistent like HOL Light as well as
Pollack-super-inconsistent like Coq.

6 Mizar is weakly Pollack-inconsistent

The Mizar system [18,21] in a strict sense does not have a printing function. All
it prints is error numbers associated with specific locations in the source files.
Therefore the notion of Pollack-inconsistency does not apply to it. However,
there is an interface for Mizar by Josef Urban, built on top of emacs [22,23].
This is installed by default with the system, and it does contain code to print
Mizar formulas to HTML. Hence, if we take the Mizar system to include this
environment, the notion of Pollack-inconsistency becomes applicable.

Consider the following Mizar text:

definition let x be real number;

func [x] equals 1; coherence;

end;

definition let x be natural number;

func [x] equals 0; coherence;

end;

theorem [0] <> [0 qua real number];

The number 0 both has the types natural number and real number. The
second definition of [x] hides the first, hence the value of [0] is 0. However,
if one removes the type natural number using the qua construction, the sec-
ond definition does not apply anymore, and the value becomes 1. Of course

11

Wiedijk

these numbers are different, and hence the theorem is accepted without error
messages.

What we see here is Mizar’s overloading in action: the two [x]s are math-
ematically unrelated but use the same notation. The syntax is disambiguated
by the type of the argument.

Now if we generate a web page for this text using Josef Urban’s environ-
ment, the formula is printed without the qua:

theoremtheorem :: POLLACK:1

[0] <> [0] ;

This shows that [0] and [0 qua real number] are identified in a Pollack-
axiom, and that Mizar therefore is Pollack-inconsistent.

The underlined characters in this example are hyperlinks to the definition
of the notion. In the HTML source the two terms are not identical, as the two
links point at different definitions. Still if one just looks at the characters that
one would copy/paste back into a Mizar file – which seems the natural choice
for the output of printt in Mizar – then the system is Pollack-inconsistent.

Josef Urban pointed out to me that one can have a Mizar symbol for a
provable predicate that parses and prints like ‘0=1’. However, this would affect
the parser and printer in the same way, and therefore this would not lead to
Pollack-inconsistency. It just would be a very confusing notation.

7 Metamath is Pollack-consistent

It is much easier to show that a system is Pollack-inconsistent than to show
that it is Pollack-consistent. In the first case it is sufficient to exhibit an
example of one or more Pollack-axioms that imply a contradiction, while in
the second case one needs to prove a relationship between rather complicated
parsing and printing functions. Generally for a serious system that will be
quite difficult.

However, there is one system for which establishing Pollack-consistency is
trivial: Norman D. Megill’s Metamath system [16,17]. In Metamath there
is no distinction between strings and terms/formulas, and the parsing and
printing functions therefore are taken to be the identity. Obviously these
functions are well-behaved in the sense of Definition 1.2, and therefore the
system automatically is Pollack-consistent by Lemma 2.7.

12

Wiedijk

8 Conclusion

8.1 Discussion

When discussing Pollack-inconsistency with users of interactive theorem prov-
ers, often they appear to consider it a non-issue. They agree that the printing
function of their system sometimes can be a bit quirky and misleading, but
then they argue that if it really is needed then one can turn on more infor-
mation in the printing function. The fact that on the inside of the system
everything is guaranteed to be meaningful seems to be sufficient for them.

This attitude of interactive theorem prover users is a bit reminiscent of
how computer algebra users react to the fact that computer algebra systems
like Mathematica and Maple occasionally behave in an inconsistent way, due
to the lack of semantics for the expressions in such a system. The system
is useful to the user, one can find out what is going on if one wants it, and
therefore no problem is perceived.

It is hard to argue with this attitude. If no problem is felt, then in some
sense there is no problem.

However, if one does agree that Pollack-consistency is important and one
would like to have a system be Pollack-consistent, and even in a way that it
is possible to formally prove it, we suggest the following approach.

One writes another printing function printfailsafe
t

, that gives output which
is trivial to parse correctly. For instance there are brackets everywhere, all
coercions are printed, there are type annotations everywhere, and so on. One
might even use a completely different syntax, possibly XML, with special brack-
eting to distinguish it from ‘normal’ term syntax.

One also adapts the parsing function to not only have it parse ‘normal’
term syntax appropriately, but also to recognize the output of printfailsafe

t
and

parse that correctly as well. This last requirement should be easy to fulfill
because of the design of printfailsafe

t
.

This means that we then have three functions

printt : term → string

printfailsafe
t

: term → string

parse′
t

: string → term

which satisfy the property

∀t. parse′
t
(printfailsafe

t
(t)) = t

Now one combines the two printing functions into a new printing function in
the following way (we use ML style syntax here):

13

Wiedijk

let print′
t
t =

let s = (printt t) in

if (parse′
t
s) = t then s else (printfailsafe

t
t)

First one prints the term in the usual way, but then one also parses it back,
to make sure one gets the original term that way. If that is not the case,
then one ‘falls back’ on the failsafe version of the printer, which of course is
certain to get the right parsing. With this definition obviously we get the
well-behavedness property

∀t. parse′
t
(print′

t
(t)) = t

and therefore the system is Pollack-consistent.

This approach will make printing slower, as every time something is printed
the output also will be parsed back. However, printing is not a bottleneck in
most interactive theorem provers, and this probably will not be an important
issue.

If the function printfailsafe
t

is too extreme, and just prints a lot of ‘gibber-
ish’ for a term, then this approach, while formally making a system Pollack-
consistent, mainly makes the system point out where the original printing
function does not behave well by in that case giving unreadable output.

It will be an interesting challenge to design a printing function for HOL

Light that handles the examples from Section 3 well – i.e., it does not print
a lot of gibberish in those cases – while still satisfying the well-behavedness
property.

8.2 Future work

The main task ahead of us is to convince the makers of interactive theo-
rem provers that these issues are worth looking into. That is, to convince
them to modify their parsing/printing functions to make their systems Pollack-
consistent. Or at least to make these functions closer to being well-behaved
than they are today.

In Sections 3–6 we established some Pollack-inconsistencies of some sys-
tems, but we did not exactly determine where they are on the Pollack-inconsis-
tency spectrum. For example, it would be interesting to know whether Coq is
strongly Pollack-inconsistent as well. This will need close scrutiny of the Coq
standard library. We also should investigate the Pollack-consistency of other
interactive theorem provers, like for example PVS.

Finally it would be attractive to have a system for which the Pollack-
consistency has been formally proved. An obvious choice for this would be a
modified version of HOL Light, as for this system the consistency of the kernel
already has been established [9].

14

Wiedijk

References

[1] Bruno Barras. Coq en Coq. Rapport de Recherche 3026, INRIA, October 1996.

[2] Bruno Barras. Auto-validation d’un système de preuves avec familles inductives. Thèse de
doctorat, Université Paris 7, November 1999.

[3] The Coq Proof Assistant. Web page http://coq.inria.fr/.

[4] Coq Development Team. The Coq Proof Assistant Reference Manual, 2008.

[5] Anthony Fox. Formal Specification and Verification of ARM6. In D.A. Basin and B. Wolff,
editors, TPHOLs 2003, volume 2758 of LNCS. Springer, 2003.

[6] Georges Gonthier. A computer-checked proof of the Four Colour Theorem. http://research.
microsoft.com/~gonthier/4colproof.pdf, 2006.

[7] John Harrison. The HOL Light theorem prover. Web page http://www.cl.cam.ac.uk/
~jrh13/hol-light/.

[8] John Harrison. The HOL Light manual (1.1), 2000.

[9] John Harrison. Towards self-verification of HOL Light. In Ulrich Furbach and Natarajan
Shankar, editors, Proceedings of the Third International Joint Conference IJCAR 2006, volume
4130 of LNCS, pages 177–191, Seattle, WA, 2006. Springer.

[10] John Harrison. HOL Light Tutorial (for version 2.20), 2007.

[11] John Harrison. Formalizing an Analytic Proof of the Prime Number Theorem. In R. Boulton,
J. Hurd, and K. Slind, editors, Tools and Techniques for Verification of System Infrastructure.
The Royal Society, 2008.

[12] Isabelle. Web pages http://www.cl.cam.ac.uk/research/hvg/Isabelle/ and http://
isabelle.in.tum.de/.

[13] Gerwin Klein et al. seL4: formal verification of an OS kernel. In J.N. Matthews and Th.
Anderson, editors, Proceedings of the ACM SIGOPS 22nd symposium on Operating systems
principles, pages 207–220, 2009.

[14] Xavier Leroy. Formal Certification of a Compiler Back-end, or: Programming a Compiler with
a Proof Assistant. In POPL’06, 2006.

[15] William McCune and Olga Shumsy. Ivy: A Preprocessor and Proof Checker for First-Order
Logic. In Matt Kaufmann, Panagiotis Manolios, and J Strother Moore, editors, Computer-
Aided Reasoning: ACL2 Case Studies. Kluwer Academic Publishers, 2000.

[16] Norman D. Megill. Metamath Home Page. Web page http://us.metamath.org/.

[17] Norman D. Megill. Metamath, A Computer Language for Pure Mathematics. http://us.
metamath.org/downloads/metamath.pdf, 1997.

[18] Micha l Muzalewski. An Outline of PC Mizar. Fondation Philippe le Hodey, Brussels, 1993.

[19] Tobias Nipkow, Larry Paulson, and Markus Wenzel. Isabelle/HOL — A Proof Assistant for
Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

[20] Randy Pollack. How to Believe a Machine-Checked Proof. In G. Sambin and J. Smith, editors,
Twenty-Five Years of Constructive Type Theory. Oxford University Press, Oxford, 1998.

[21] Andrzej Trybulec et al. Mizar Home Page. Web page http://mizar.org/.

[22] Josef Urban. MizarMode - an integrated proof assistance tool for the Mizar way of formalizing
mathematics. J. Applied Logic, 4(4):414–427, 2006.

[23] Josef Urban. XML-izing Mizar: Making Semantic Processing and Presentation of MML Easy.
In M. Kohlhase, editor, MKM, volume 3863 of LNCS, pages 346–360. Springer, 2006.

15

	Introduction
	Problem
	Approach
	Related Work
	Contribution
	Outline

	Some properties of Pollack-consistency
	HOL Light is strongly Pollack-inconsistent
	Coq is weakly Pollack-super-inconsistent
	Isabelle is strongly Pollack-inconsistent and weakly Pollack-super-inconsistent
	Mizar is weakly Pollack-inconsistent
	Metamath is Pollack-consistent
	Conclusion
	Discussion
	Future work

	References

